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ABSTRACT 

Computational Scattering Models for Elastic and Electromagnetic Waves 

in Particulate Media 

by 

Timothy Edwin Doyle, Doctor of Philosophy 

Utah State University, 2003 

Major Professor: Dr. J. R. Dennison 
Department: Physics 

Numerical models were developed to simulate the propagation of elastic and electromagnetic 

waves in an arbitrary, dense dispersion of spherical particles. The scattering interactions were modeled 

with vector multipole fields usmg pure-orbital vector spherical harmonics, and solved using the full vector 

form of the boundary conditions. Multiple scattering was simulated by translating the scattered wave fields 

from one particle to another with the use of translational addition theorems, summing the multiple 

scattering contributions, and recalculating the scattering in an iterative fashion to a convergent Solution. 

The addition theorems were rederived in this work using an integral method, and were shown to be 

numerically equivalent to previously published theorems. Both ordered and disordered collections of up to 

5,000 spherical particles were used to demonstrate the ability of the scattering models to predict the spatial 

and frequency distributions of the transmitted waves. 

The results of the models show that they are qualitatively correct for many particle configurations 

and material properties, displaying predictable phenomena such as refractive focusing, mode conversion, 

and photonic band gaps. However, the elastic wave models failed to converge for specific frequency 

regions, possibly due to resonance effects. Additionally, comparison of the multiple scattering simulations 

with those using only single particle scattering showed that the multiple scattering computations are 

quantitatively inaccurate. The maccuracies arise from nonconvergence of the translational addition 

theorems, introducing errors into the translated fields which minimize the multiple scattering contributions 



IV 

and bias the field amplitudes towards single scattering contributions. The addition theorems are shown to 

converge very slowly, and to exhibit plateaus in convergence behavior that can lead to false indications of 

convergence. 

The theory and algorithms developed for the models are broad-based, and can accommodate a 

variety of structures, compositions, and wave modes. The generality of the approach also lends itself to the 

modeling of static fields and currents. Suggestions are presented for improving and implementing the 

models, including extension to nonspherical particles, efficiency improvements for the algorithms, and 

specific applications in a variety of fields. 

(203 pages) 
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G^o, Hj^Q, JjjQ           Symbolic substitutions for terms in the electromagnetic boundary 

G;^,, Hf^i, J^i condition equations 

Ti (j), T^ (h), r, (g)      Symbolic substitutions for terms in the elastic wave boundary 

Tj (j), T2 (h), etc. condition equations 

U^ Longitudinal displacement vector 

u^ Shear displacement vector 

O Scalar potential for longitudinal elastic field 

T Vector potential for shear elastic fields 

kj^ Longitudmal wavevector 

k^ Shear wavevector 

c^ Longitudinal wavespeed 

Cg Shear wavespeed 

p Density 

X,lJ, Lame constants 

rj Electromagnetic index of refraction 



CHAPTER 1 

INTRODUCTION 

1.1 Background 

A particulate medium is inhomogeneous matter comprised of discrete particles suspended in a 

matrix. Particulate media are ubiquitous. They comprise a large portion of the earth's crust, and are found 

in interstellar nebulae, interplanetary plasmas, dust-strewn atmospheres, cloud formations, and ocean 

seabeds. Biological systems are also particulate m character, consisting of macromolecular suspensions, 

organelles, cells, and tissues. Humanity has also engineered materials that use particulates to enhance 

strength (concrete, rubber tires, nanocomposites), provide chemical energy (alkaline batteries, solid rocket 

propellants), or unpart new properties (photonic band gap materials, electrorheological fluids). 

The propagation of waves through particle-filled media is an knportant yet difficult problem which 

has challenged physicists for over a century. An analysis of the propagation of waves through a particle- 

filled medium is a smdy in scattering. If the particles are widely dispersed the scattering is dominated by 

single particle scattering, where the waves are scattered only once by a particle. At low particle 

concentrations, the single-scatterer approximation is usually sufficient to describe the propagation of a wave 

through a particulate medium and to predict the resultant wave properties. 

At high particle concentrations the single-scatterer approximation is no longer valid. As the 

particles become more closely packed, a larger portion of the waves scatter from one particle to another in a 

process known as multiple scattering. Important problems in understanding wave propagation in particulate 

media include determining under what conditions single particle scattering is valid, under what conditions 

multiple scattering must be considered, and determining the extent and effects of multiple scattering. 

Multiple scattering is a notorious problem in physics because it is a many-body problem. There 

are special cases where multiple scattering is exactly solvable, includmg those involving just a few particles 

or symmetric geometries such as molecular structures or ordered lattices. However, the multiple scattering 

problem is not solvable m an exact, closed, analytical form for arbitrary scatterer numbers, properties, and 

arrangements. Statistical, approximation, or computational methods must therefore be employed to 
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physically describe how waves propagate through the particulate medium, and to predict the changes in 

wave properties as a result of the multiple interactions. Many approximate and statistical solutions have 

been advanced and are successful at predicting the general, overall propagation properties of particulate 

matter. However, these methods replace the detailed physics of the scattering mechanisms with simplistic 

mathematical idealizations, and are often not a satisfactory substitute for a complete mechanistic description 

of the scattering. 

To date, wave propagation has been most successfiilly treated for dilute particle dispersions where 

multiple scattermg is minimized.'-^ Statistical and approximation methods work quite well for these cases, 

but typically also require particles of uniform size, uniform properties, and low contrast with respect to the 

matrix properties. Current statistical and approximation methods fail, however, for moderate-to-high 

particle concentrations (above 15% for solid particles in a solid matrix) and high frequency (small 

wavelength) scattering.'-^ 

Another deficiency of current statistical and approximation methods is that they are not sensitive to 

the details of the microstructure. Such details include particle size distributions, mixed particle types (i.e., 

particles of different materials), and various degrees of order and disorder in the spatial distribution of the 

particles.' Statistical and approximation methods typically use an effective medium approximation to 

model the particulate medium. Such approaches are useful for qualitative analysis of the general behavior 

of the medium, but fall short of a quantitative determination of properties based on the microstructure (i.e., 

particle sizes, properties, and spatial distributions). Additionally, dense particle dispersions and close 

random packs have yet to be reasonably treated with an exact, fu-st principles approach. 

Computational physics has grown into a major area of research over the last quarter century, 

complementing both experimental physics and theoretical physics. Computational models allow simulation 

of many phenomena not approachable with anal34ic methods, including many-body systems (molecules, 

polymers, amorphous structures, planetary and stellar systems), continuous systems (atmospheric 

circulation, material stress states, thermal properties), and complex or chaotic systems (biological 

structures, neural networks, cellular automata, coupled dynamical systems). 
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Due to the phenomenal increase in computational speed, capability, and accessibility in the past 

few decades, computational simulations in condensed matter and materials physics have become powerful 

and useful alternatives to statistical and approximation methods. Computational models have allowed the 

numerical solution of problems and simulation of physical systems which were previously unsolvable and 

beyond analysis. They additionally offer the following advantages:^ 

1. They are ideally suited for many-body problems, providing exact and detailed information on the 

microscopic processes, and deriving macroscopic properties from these processes in an ab initio 

first-prmciples manner. 

2. They are a more physics-based, mechanistic approach as compared to emphical approaches since 

they directly calculate the relevant interactions to arrive at the fmal solution. 

3. They are flexible, allowmg a wide range of variables and virtual experiments to be tested in the 

model, thereby increasing our fiindamental understanding of the physical behavior of the studied 

system. 

4. They represent virtual instruments, allowing close-up (virtual microscope), distant (virtual 

telescope), or spectral (vutual spectrometer) views of the studied system. 

Development of computational models for multiple scattering m particulate media was therefore 

the focus of this research. Although such models have been developed in the past, opportunities for 

improvements in both theory and unplementation existed to increase their versatility, accuracy, and 

usefulness. Additionally, the exponential growth m computer capabilities and increasmg access to those 

capabilities over the past two decades has made the first-principles modelmg of wave propagation in 

extended particulate media mexpensive and practical. 

This dissertation presents the development of analytical expressions and numerical algorithms for 

computation of muUiple scattering m particulate media. These computational models are based on a Vector 

Multipole Iterative Scattering Technique (VMIST). The models simulate particle-filled media with mixed, 

arbitrary particle sizes, particle properties, and packing structures. The particles are modeled as spheres, 

with vector spherical harmonics used as basis flmctions for the fundamental excitations of the particles. 
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These functions are general in character and can be applied to both electromagnetic and elastic waves. The 

VMIST models compute the propagation of waves through a particulate medium by using single particle 

scattering solutions to obtain the primary scattered fields. The scattered fields are then translated fi'om one 

particle to another using translational addition theorems. The single particle scattering solutions are then 

applied again to yield the secondary scattering contributions. This process of scattering-translating- 

scattering is repeated over and over again via iteration until the scattered field solutions converge to a 

specified criterium. 

1.2 Objectives 

The primary objective of this research was to develop ab initio computational models to describe 

how elastic and electromagnetic waves propagate through a particle-filled medium. The models developed 

were intended to be used as tools for various purposes, and were designed with generality to address the 

broad-ranging media and applications that can be profitably addressed with this approach. This generality 

includes the ability to model a three-dimensional system of particles with various sizes, properties, and 

packing densities. The particles can also be arranged in any arbitrary configuration including periodic, 

quasicrystalline, and random. The generality also extends to a fiill range of wavelengths—^no long or short 

wavelength approximations are made. 

Important questions that this research was intended to address included the following: 

1. Can elastic and electromagnetic waves be modeled using the same mathematical formalisms, 

solution methods, and program code structure? 

2. Does the use of pure-orbital vector spherical harmonics confer an advantage in the development of 

the multiple scattering theory? 

3. How efficient and accurate are the translational addition theorems, and for what spherical particle 

configurations (radii, distances, and angular orientations)? 

4. Are the translational addition theorems fast and accurate enough for media and material 

simulations containing large numbers of particles (lO'-lO')? 
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5.    How well do simulations using nearest neighbor and single scatterer approximations compare to 

multiple scattering simulations? 

Scattering models are tools used for a wide variety of purposes in many scientific and engineering 

disciplines. From a broad perspective, there are three reasons for developing scattering models for 

particulate media: 

1. To discover the interactions of matter with energy as a function of structure. 

By determining how waves behave in an arbitrary arrangement of particles, we can discover new 

phenomena and physics by studying configurations with varying degrees of order-disorder, complexity, 

anisotropy, and packing density (particle concentration). Currently such studies are limited by the types of 

experimental samples that can be manufactured and tested, or by the accuracy of approximation or 

statistical approaches. Computational methods based on first principles are necessary for pushing our 

knowledge of these physical systems and their interactions with classical fields further. 

2. To determuie the structure of matter that is remote or inaccessible. 

By modeling how waves are altered as they travel through a particle-filled material or medium, we 

can find out more about the structure and properties of that material or medium. This is the goal in 

nondestructive evaluation, remote sensing, seismic exploration, astrophysical observations, and medical 

imaging. The properties we wish to discover include internal variations in elastic or electromagnetic 

properties, particle size distributions, particle number densities, and microstructure. Knowmg such 

properties allows the discovery of tumors and disease in people, petroleum or gas m rocks, plankton blooms 

in the ocean, material degradation and aging in particulate composites, precipitation in clouds, and dust 

particles in deep space. 

3. To modify the structure of matter for new materials and tools. 

By predicting how waves will behave in a particle-filled material or medium, we can custom 

design such a material or medium to have useful and unique electromagnetic and acoustic properties. This 

is the goal in the development of photonic and acoustic band gap materials, radiation-absorbing paints and 

coatings, advanced or multi-functional particulate composites, nanocomposites, ultrasonic transducers and 
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contrast agents, nano-dusts (collections of very small sensors or robotic elements), nonlinear optical and 

laser materials, and new biomaterials. Having the capability to predict how waves interact in a particle- 

filled medium will allow us to computationally design these new materials and devices based on the 

complex physical interactions that occur in particle-filled materials. 

1.3 Scope 

The approach for developing the VMIST computational models involved three steps: 

1. Derive the mathematical expressions for single particle scattering from the fundamental field 

equations 

2. Derive and test the equations for translating the scattered fields from one particle to another. 

3. Design, build, and test algorithms for computing the multiple scattering. 

Both elastic and electromagnetic fields were modeled in this work since they are both vector fields arising 

from the vector Hehnholtz equation. The scattering theories for both types of fields can therefore use the 

same wave fimctions, translational addition theorems, and mathematical methods. 

Several key areas were focal in developing and improving upon the scattermg models. These areas 

included (1) a review of the vector spherical wave fimctions used to date for scattering, (2) a reformulation 

of the single sphere scattering problem using pure-orbital vector spherical harmonics, (3) rigorous solution 

of the scattered and transmitted field amplitude coefficients usmg the method of boundary conditions, (4) 

rederivation of the translational addition theorems using pure-orbital spherical harmonics and an integral 

approach, (5) numerical testing and comparison of the rederived addition theorems with previously 

published versions, and (6) codmg, testing, and demonstration of the scattermg models in Fortran programs. 

Each of these topics will be presented in the following chapters m the indicated order. 

For the purposes of this monograph, aparticulate medium is defmed as a collection of particles of 

one or more material compositions, dispersed in a medium (the matrix) of different composition, structure, 

or phase (Figure 1-1, left). The microstructure of such a particulate state is knovra as a dispersion 

microstracture, and can be differentiated from the granular state by the observation that the granular state is 

characterized by closely-packed particles in contact, but without a substantial matrix affecting the particle 



behavior (Figure 1-1, middle). It is the nature of the physical contacts, packing structure, and resultant 

dynamics that are of interest in granular physics. A particulate mediimi can also be differentiated from the 

polycrystalline state that is typical of metals, ceramics, and many rocks (Figure l-I, right). The 

polycrstalline state is comprised of a mosaic of individual, interlocking grains of various crystalline phase 

and/or composition. Although this definition for particulate media appears restrictive and limited in 

application, there exists numerous materials and states of matter that are described well with a dispersion 

microstructure (see Chapter 7). 

The scattering models developed in this work are limited to dispersion-type microstructures 

consisting of spherical particles embedded in a matrix. They are therefore not applicable to polydomain- 

type microstructures such as the grain structure in metals, or to granular materials such as sand. The 

material properties of the particles are assimied to be isotropic, homogeneous, and linear within the particle 

(although extension of the models to concentrically layered spheres would be straightforward). The 

material properties of the matrix are also isotropic, homogeneous, and linear. 

/•    N' 
\ 

FIGURE 1-1. Illustrations of dispersion (left), granular (middle), and polycrystalline (right) 
microstructures. 



1.4 Originality and Significance of Contribution 

The use of multipole translations and iteration to model multiple scattering in many-particle 

systems is not new, and has been reported by several groups over the past 30 years. Many opportunities 

exist, however, to improve upon the previously published approaches, to extend the application of the 

models to more complex material systems or wave propagation modes, and to test the accuracy and 

convergence of such approaches. Such improvements, applications, and evaluations comprise the original 

contributions of this work. These contributions include the following: 

1. Reformulation of the multiple scattering formalism usmg pure-orbital vector spherical harmonics 

and associated vector multipole fields. 

2. A comparison of vector muhipole functions used for spherical scattering, and introduction of a 

modification that reconciles the two most widely-used definitions and is congruent with the use of 

translational addition theorems. 

3. A clear and rigorous solution of the boundary conditions for spherical scattering using pure-orbital 

vector spherical harmonics, showing that solution of the boundary conditions requires application 

of orthogonality conditions for vector functions as opposed to scalar functions. 

4. A new and more straightforward derivation of the translational addition theorems for vector 

multipole fields based on pure-orbital vector spherical harmonics and an integral method. 

5. Two new and numerically equivalent methods for deriving and computing the field translation 

coefficients, based (1) on direct translation of the fields, and (2) on translation of the potentials and 

subsequent calculation of the fields using the gradient and curl operators. 

6. A numerical comparison of published addition theorems, showmg the equivalence of this work's 

rederived form with the most widely-cited theorems, but showing significant numerical 

maccuracies for other recently published theorems. (These tests appear to be the first comparisons 

of addition theorems m the literature.) 

7. Evaluation of the convergence behavior of the addition theorems in a more direct and accurate 

manner than presented m the literature. The results indicate that other researchers have grossly 
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underestimated the number of multipole expansion terms (maximum multipole order) required for 

convergence. 

8. Application of the multiple scattermg formalism to the scattering of full elastic waves (longitudinal 

+ shear modes) and electromagnetic waves in random particle systems (previous studies were 

limited to either longitudinal waves or ordered particle systems). 

9. Comparison of scattering model results for multiple scattering with those using single particle 

scattering and nearest neighbor approximations, and preliminary determination of the limits of 

validity for the multiple scattering models. 

10. Quantitative testing of the multiple scattering theory and identification of deficiencies in the 

approach, with emphasis on convergence and multipole expansion truncation errors. 
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CHAPTER 2 

REVffiW OF PREVIOUS WORK 

2.1 Single Sphere Scattering 

Although Mie is credited as havmg solved the problem of electromagnetic scattering by a sphere 

in 1908 (and hence given immortal status with the universal use of the term "Mie scattering"), other notable 

scientist made important contributions to the problem prior to 1900, most notably Lorenz and Thompson." 

Debye also published solutions in 19097 Stratton established the modem form of the solution with the use 

of the vector spherical wave functions M and N, and later solutions follow this format.*"" Logan presents 

the early history of the electromagnetic solution for the single sphere, with emphasis on the contributions 

prior to and concurrent with Mie's work.'''' 

The scattering of elastic waves by a single sphere also had beginnings in the 19* century, starting 

with Clebsch and Lord Rayleigh."''* These early attempts were only partial solutions, however, in that 

they were constrained to acoustic (sound) waves in a fluid such as air, which can only support longitudinal 

waves, Clebsch's work, although forgotten and lost for a century, established the foundations for solving 

this class of problems in 1863 with the use of separation of variables and boundary conditions.'^ In 1877, 

Lord Rayleigh (John William Strut) introduced the concepts of spherical surface harmonics S„ and 

spherical harmonics \i/„; however, these functions were not of the modem form physicists are now familiar 

with. He also used normal Bessel functions and Legendre polynomials. The specific problems Lord 

Rayleigh solved included air vibrations emitted by a vibrating sphere, air vibrations inside a spherical 

enclosure, air vibrations between concentric spherical shells, and the scattering of plane wave air vibrations 

from a spherical obstacle. 

Progress was slow, however, for the single sphere elastic wave problem. In the mid-20* century 

Faran extended the scattering work to solid spheres within which both shear and longitudinal waves can 

exist.'' Substantial progress was not seen for the single sphere elastic scattering problem until 1956, when 

Ying and Truell published their benchmark paper.^° Ying and Tmell's paper became the most-cited and 

well-known work on the scattering of elastic waves by a spherical particle. The article solved the scattering 
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problem for a sphere within an elastic solid, and treated three cases: scattering by a rigid sphere, an elastic 

sphere, and a spherical cavity. Their work was based on methods used for the solution of Mie scattering- 

boundary condition solutions and wave functions based on spherical Bessel functions and Legendre 

polynomials. Their work also addressed important issues in particle scattering such as mode conversion 

and the frequency dependence of the scatteruig. Numerous subsequent papers published up to the 1990's 

have verified, extended, and generalized this work.^''^'' Other approaches to the single sphere elastic wave 

scatteruig problem have included resonance and ray tracing methods. 

Although the sum of the work on smgle sphere scattering ranks as a substantial and important 

contribution to science, much of it is presented with cumbersome notation and definitions. Specifically, 

there is a widespread reliance on the vector spherical wave fimctions defmed by Stratton (L, M, and N for 

the longitudmal and two transverse modes of propagation), which are constructed from scalar functions 

(spherical Bessel, Legendre, and trigonometric functions). Very little work has been found in the literature 

which solves the single sphere scattering problem with the use of more modem (pure-orbital or pure-spin) 

vector spherical harmonics. The value of such an approach will be demonstrated in followmg chapters. 

2.2 Mathematical Tools 

The vector spherical wave functions presented by Stratton—L, M, and N—have been and are still 

widely used for both electromagnetic and elastic (acoustic) scattering theories for spherical coordinate 

systems.' These definitions have also been used in such venerable texts as Morse and Feshbach, and 

Jackson.""'"' Closely-related fimctions are those defined by Hill."^'"^ 

A more elegant definition for these functions are the vector multipoles presented by Rose in 1957, 

and used by Greiner and Maruhn.""'"' Whereas the vector spherical wave functions L, M, and N are 

defmed component-by-component usmg scalar spherical harmonics (or Legendre fimctions + sine/cosine 

fimctions), the vector multipoles are more simply expressed using vector spherical harmonics. There are 

several types of vector spherical harmonics, the most useful being the pure-spin and pure-orbital 

harmonics."*'"'' The pure-orbital vector spherical harmonics were defined by Edmonds in 1957, and are 

presented in current mathematical physics texts. ■ 
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Greiner and Marahn present a very good discourse and introduction on vector spherical harmonics 

and vector multipole fields (longitudinal, electric, and magnetic) in terms of modem vector spherical 

harmonic notation (pure-orbital harmonics).*^ Thome presents a very good review of vector spherical 

harmonics with modem notation (pure-spin and pure-orbital harmonics) and vector multipole fields.''^ 

Varshalovich et al. is also a very useful reference providing extensive detail on the relationships, 

properties, and forms of scalar, vector, and tensor spherical harmonics.  Varshalovich et al. additionally 

includes chapters on Clebsch-Gordan coefficients, Wigner-3J coefficients, and other mathematical forms 

useful in describing spherical functions in classical theory and angular momentum in quantum theory.''^ 

Arfken and Weber has been updated with fairly good sections on vector spherical harmonics, spherical 

Bessel functions, and solution of the Helmholtz equation.*' 

The use of both Stratton's vector spherical wave functions (L, M, and N) and Rose's vector 

multipoles in the literature raises the following questions that are addressed by this dissertation: 

1. Which formalism is most useful and concise for both electromagnetic and elastic wave scattering 

problems? 

2. What is the relationship between these two formalisms, and would it be useful to modify one or 

the other to make them more compatible? 

The radial functions in both the vector spherical wave functions and vector multipoles are the 

spherical Bessel functions. These are defined in numerous texts.'""'" Abramowitz and Stegun are an 

indenspensable resource for mathematical formulae, especially recursive relations for calculating spherical 

Bessel functions.'" Gillman and Fiebig present a simple computer program that resolves the appearance 

and growth of large errors (for large n) in the spherical Bessel functiony'„f3c) by using a downward instead 

of upward recursion algorithm." This algorithm was found essential in the programming of the VMIST 

computations. 

Translational addition theorems for spherical harmonics are the core mathematical tools for a 

multipole approach to multiple scattering. Addition theorems for the scalar spherical harmonics were first 

derived by Friedman and Russek, and were also presented by Rose.'^'" Stein corrected the scalar addition 
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theorems of Friedman and Russek, and also introduced addition theorems for the vector spherical wave 

functions M and N.'"*  Cruzan furthered the development of the vector addition theorems and essentially 

rederived them (however, still in the cumbersome notation of Stratton's M and N multipoles) in 1962." 

Numerous papers have been published since Cruzan tbat rederive or reformulate the scalar and 

vector translational addition theorems.""*' However, Cruzan's derivations remain the benchmark and are 

the most widely used form of the translational addition theorems. Although the scalar addition theorem 

presented by Cruzan is straightforward, other published versions are not as approachable. The confusion in 

the literature for the vector addition theorems is even worse. The number and variety of translational 

addition theorems published over the past 50 years introduces the following problems: 

1. Most of the theorems, including Cruzan's, use notation and functions specific only to the paper. 

This specialized notation makes comparison of the different theorems difficult, and the inability to 

adhere to standard mathematical usage impedes their interpretation. 

2. Much of the notation used in the theorems is unwieldy, cumbersome, unfamiliar, or vague. 

3. Many of the theorems use uncommon spherical harmonic definitions and normalizations, or 

alternate vector spherical harmonic definitions. 

4. Many of the theorems differ both in derivation method and mathematical content. Even a cursory 

examination reveals discrepancies between theorems that can only be interpretted as that some of 

the published theorems are incorrect. 

A review of the literature revealed that the following work was needed to resolve these issues: 

1. A new, more straightforward and mathematically rigorous derivation method for the vector 

addition theorems. 

2. Vector addition theorems that exclusively use standard mathematical usage. 

3. Vector addition theorems that are applicable to both Stratton's vector spherical wave functions and 

Rose's vector multipole notation. 

4. Verification and comparison testing of the theorems to test their correctness, convergence, and 

computational efficiency. 
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Since having correct and compatible translational addition theorems are necessary for constructing a 

multiple scattering computational model, these tasks were each addressed in this dissertation. 

2.3 Two-Sphere and Sphere-Plane Scattering 

Liang and Lo were one the first groups to solve the two-sphere problem for electromagnetic 

scattermg using multipole translations.™ They applied Cruzan's translational addition theorems for vector 

spherical wave functions, but limited the problem to spheres along the z-axis to simplify the addition 

theorems. Bruning and Lo generalized the solution to spheres with arbitrary orientation and distance.'*'^^ 

New and Eisler solve the two-sphere problem for acoustic scattering (pressure or longitudinal waves only) 

using the method of Green's functions and Sack's addition theorems.^^'^^ Other two-sphere solution 

methods have used Green's function in bispherical coordinates, the generalized multipole technique, far- 

field approximations, dipole approximations, model analysis, and the T-matrix (transfer matrix) 

approach.^''"™ Other multipole solution methods for the acoustic scattering by two spheres have also been 

presented.'"'" 

A closely related problem is the scattering by a sphere close to a plane boundary or surface. 

Gaunaurd and Huang solved this problem for acoustic (longitudinal) scattering using the scalar addition 

theorem, and applied it to the scattering of sound by air bubbles near the ocean surface.'^'*^ A ray-acoustic 

(analogous to ray-optic) approach has also been applied to near-surface ocean bubbles.*'' Electromagnetic 

scattermg of spherical particles near surfaces have been modeled as well, and an interesting application is 

the detection of contaminants and defects on electronic materials.*''** 

2.4 Multiple Scattering with Multipoles 

There are many computational methods that use multipole expansions for the multiple scattering 

of waves from a collection of spheres. In addition to the iterative approach, there are the order-of- 

scattermg, matrix, fast multipole, multiple multipole, and dipole approximation methods. Comberg and 

Wriedt review the various multipole methods and compare three of them (order-of-scattering, multiple 

multipole, and dipole approximation methods).*' 
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Iterative computation of multiple scattering for electromagnetic waves has been reported by 

Hamid et al., Mackowski, and de Daran et al. using Cruzan's vector addition theorems and Stratton's N and 

M wave fiinctions.'^"'^ Mackowski rederived the addition theorems and found recursive expressions to 

simplify their computation.^' Fuller and Kattawar use the order-of-scattering method, which is also an 

iterative solution, but one that separates the scattered fields into first reflection, second reflection, etc. and 

sums the scattered field coefficients separately based on this order of reflection.'^'^'' 

Borghese et al. first reported a scalar approach using Debye potentials, but shifted to vector 

functions and a matrix solution approach in subsequent studies.'^"^^ The matrix approach essentially treats 

the particle-to-particle interactions and their scattered field coefficients as a linear algebra problem. With A'' 

spheres and two scattered field components (N and M) for each sphere, the problem becomes one of 

solving 27/equations with 2^^^ unknowns. As expected, solutions for large A''are problematic, and Borghese 

et al. limited their models to small (2-4) clusters of spheres. Quinten and Krebig also use a linear solution 

approach for small (2-5) clusters of spheres.'^ Mackowski also adopts the matrix approach.'"" 

It is clear fi-om the number of respective articles published for each method that the matrix 

approach has been much more thoroughly studied and applied than the iterative approach. The matrix 

approach sees full implementation in the T-matrix (transfer matrix) method developed by Waterman for 

both electromagnetic and elastic wave scattering.""""''' Again, the T-matrix approach uses multipole 

expansions and translations via addition theorem?. However, the T-matrix method is more generalized, and 

allows arbitrary scattering geometries to be formulated and solved, including layered particles, 

nonspherical particles, and point scatterers.'"'""^ Again, the drawbacks of the T-matrix approach are that 

the matrices become intractable for large numbers of particles and are often sparse. This makes inversion 

and solution of the matrices difficult for realistic simulations of a particulate medium. Stout et al. address 

these problems and present a remedy with a recursive T-matrix method.'" 

The most relevant application of the T-matrix approach to the problem addressed by this 

dissertation (the scattering of elastic and electromagnetic waves in a random particulate media) was 

recently published by Gumerov and Duraiswami."' However, their work only addresses acoustic (sound) 

waves in air, and therefore only requires the scalar addition theorem to translate the potential of the 
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longitudinal (compressional) field. A computational solution for fiill (longitudinal + shear) elastic wave 

scattering in a random ensemble of spheres was not found after a thorough literature search. Part of the 

reason for this is that the full elastic wave solution is niore complicated than that for either purely 

compressional sound waves or electromagnetic waves. Elastic waves have three fields to be specified (1 

longitudinal + 2 shear), whereas sound waves only have one field (longitudinal) and electromagnetic waves 

have two (electric + magnetic). Additionally, the longitudinal field is coupled in the solution matrix by the 

boundary conditions to one of the shear fields. This coupling is minimized in the case of sound scattering 

(the only shear fields are inside the particle), and absent in electromagnetic scattering. 

Another reason for the absence of elastic wave scattering models for particulate media is due to 

the emphasis on the T-matrix approach in the literature. Solution of the elastic wave scattering problem for 

large numbers of particles is currently not practical with the T-matrix approach due to the large size and 

complexity of the matrices (3N x 3N since there are three external fields for each particle). The iterative 

approach does not have this limitation, however, and can be advantageously applied to the elastic wave 

scattering problem (as will be shown in this work). 

The limitations of the T-matrix approach have spurred the development of more efficient but less 

exact multipole computation methods. The fast multipole method (FMM) is one such example.'^°'^^'' The 

FMM uses a hierarchal approach that first models a small ensemble of particles and computes the scattered 

fields for the particle-to-particle interactions. The FMM then constructs a second-order ensemble using the 

small ensemble as the building blocks. The scattered fields from the small ensemble interact with the 

scattered fields from other small ensembles to yield the scattered fields for the second-order ensemble. 

Even higher-order ensembles can then be constructed and the computational process continued until the 

total scattering field is calculated. Note that the FMM is an approximation in that the scattering 

interactions are approximated by progressively increasing the scale of the scattermg volume/entity. 

Another approximate multipole method is the multiple multipole method.'^'"'^^ In the multiple 

multipole method, the scatterers are much smaller than the wavelength. Therefore, multiple scattering is 

accounted for with simplified, non-orthogonal multipole expansions from various expansion points 
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distributed throughout the medium. The advantage of the multiple multipole method is that it converges 

faster than methods which use conventional multipole moments tied to the particles. 

There are various other multipole approximation methods. The discrete dipole approximation use 

the superposition of dipole fields from a large array of dipoles to model the scattered fields from arbifrarily 

shaped objects and particles.'^' Other methods include indirect mode matching (IMM) of the multipole 

fields, far-field dipole-dipole coupling approximations, and ray theory.""'"^ 

2.5 Non-Multipole Multiple Scattering Methods 

2.5 (a) Other Computational Methods 

The most popular computation methods in engineering disciplines are the finite element and finite 

difference methods, so it is not surprising that these have been applied to multiple scattering in particulate 

media. "''■''"' The primary drawback of these methods is the amount of computation required to perform 

simulations of even modest microstructures. For example, to model a collection of spherical particles in a 

material, both the spheres and the mafrix must first be divided {discretized) into polyhedral cells or volume 

units (the grid mesh) that approximate the microstructure. An enormous number of cells are required to 

model three dimension problems. Even with the problem reduced to two dimensions, the number of cells 

for a single particle ranges in the hundreds. There are trade-offs involved in selecting a mesh size as 

well—a finer mesh will provide a higher fidelity solution, but at the cost of an increased computational 

burden. 

To date, most finite methods have been applied to only single particle scattering or to scattering in 

lattices where the microstructure can be simplified with repeating structural imits.*^^''" To retain 

computational tractability, scattering in random microstructures has been limited to either two-dimensional 

simulations or the use of a repeating disordered cell containing only a few particles.""'"^"''"' A related 

method, the boundary element method, has been used extensively in ultrasonic scattering, but has yet found 

utility in the multiple scattering problem."' 

An interesting and unusual computational method to be applied to multiple scattering in 

heterogeneous media is the lattice-Boltzmann approach.'''^""'' This approach models the particles on a 
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discrete lattice with both wave and phonon-like interactions, and has been used to simulate seismic wave 

propagation through rock. The approach greatly simplifies the microphysical interactions, but may be 

applicable to studying how microfractures, pores, and grain texture in rocks affect macroscopic wave 

properties such as anisotropy and attenuation. 

2.5 (b) Statistical and Approximation Methods 

Due to the complexity of the multiple scattering problem, the lack of computational capability, and 

a desire for elegant, practical solutions, numerous statistical, approximation, and integral methods were 

devised in the mid-20* century and continue to be developed up to the present.''*'■'" Since these methods 

are not multipole-based simulations but do present competing solutions to the multiple scattering problem, 

they will be briefly summarized. 

Foldy was one of the first to address the problem of the multiple scattermg of scalar waves from 

randomly distributed particles based on a simple statistical approach that averaged over particle 

configurations using probability distribution functions.''*' Lax obtained an effective field description using 

a proportionality constant (instead of an iterative equation with successive scattering terms) and a quasi- 

crystalline approximation (named such since it is only rigorously valid for crystalline particle 

configurations). '''^'"^ 

Epstein and Carhart calculated the attenuation of acoustic waves in fog due to viscosity and 

thermal losses as well as scattering losses.''" The scattering losses, however, were determined from single 

particle scattering, and no multiple scattering was assumed. Waterman and Truell, and Fikioris and 

Waterman, also used a configurational averaging approach to obtain the complex propagation constant 

(wave vector K((B,P), from which velocity and attenuation can be obtained) for a medium with randomly 

distributed scatterers.''"■''" Devaney used the self-consistent method of Lax and ensemble averaged over 

the Green tensor.''' 

Drolen and Tien treated multiple scattering using the form factor technique from X-ray scattering 

theory. The technique uses a pair distribution function to correlate the relative positions of the particles in 

the system.''^ Yuen and Dunaway described multiple scattering with a successive approximation 

procedure, and is valid for very generalized scattering.''^ Sabina and Willis used an embedding scheme 
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with approximate solutions for the smgle particle scattermg and explicit equations for the multiple 

scattering which are solved by iteration.'''' 

Beltzer presented an effective medium approach for acoustic waves in random composites that 

used a differential scheme.'^* The method first computes the effective properties for small particles in the 

matrix, thus generating an first-order effective matrix. Effective properties for particles of larger size 

embedded in this first-order effective matrix are then computed, yielding a second-order effective matrix. 

The process is continued until the macroscopic effective properties are acquired. 

Some of the other more significant multiple scattering theories include those based on the density- 

of-states approach,'"''^' variational/quantum mechanical approaches,'^^"'^^ radiative transfer and Dyson 

equations,'*^"'"" diffusion approaches,'^^■"'' path integral approaches,'""'*^ and the Lippmann-Schwinger 

equation.'"■''' The most notable density-of-states approach is by Lloyd and Berry, whose scattering 

expressions are used frequently for acoustic applications.'^" The radiative transfer/Dyson equation 

approach is analogous to electromagnetic (optical) radiative transfer theory, but assumes weak material 

heterogeneity.'*^''"" 

van Rossum and Nieuwenhuizen developed a multiple scattering description using diffusion 

theory plus corrections derived from radiative transfer equations for mesoscopic scales."^ They also 

discussed the relationship of diffusion-type multiple scattering to weak and Anderson localization. 

Feynman introduced the path integral approach to quantum mechanics, which has been applied to the 

muhiple scattering of classical waves. "^ Flattd et al. applied the path integral approach to scattering 

environments where the variations in acoustic properties are smooth and not large, including ocean and 

seismic scattering."*'"' 

Several researchers use a combination of multiple scattering theories and approaches to refine the 

approximation. For example, Mishchenko developed a statistical approach to electromagnetic scattering in 

particulate media by first beginning with the Lippmann-Schwinger equations.'*^ He then uses the 

averaging equations developed by Foldy and Lax, and further applies other approximations such as the far- 

field approximation. Although such a course may improve upon previous statistical theories and 

approximations, one wonders how far from physical reality it may take us. 
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Two very good reviews on multiple scattering theories for ultrasound are found in Povey and 

McClements, and Povey."*''" Povey and McClements present a wide range of contributed articles on the 

theory, applications, and experimental measurements of ultrasound propagation through suspensions and 

other heterogeneous systems."* The theories focus on effective medium and statistical approaches such as 

those by Foldy, Lax, and Lloyd and Berry. Povey also presents a review of the theory, experimental 

methods, and applications of ultrasonic propagation specifically through suspensions.'" The theory is 

based on the development and results from Ying and Truell for single particle scattering along with 

expressions for multiple scattermg from Waterman and Truell, Fikioris and Waterman, and Lloyd and 

Berry. 

Table 2-1 summarizes the state of the art for some of the more popular scattermg models 

reviewed, and compares them to the accomplishments and limitations revealed by this work. 

TABLE 2-1. State of the art for elecfromagnetic and elastic wave scattering models, and achievements and 
limitations of this work. 

jlModelTytie'''.-    .* '..•■■.^,^_. State of the Art 2003 Achievements niuJ I.imitntion.s of 
this Worli 

Effective medium and 
integral approaches 

Approximations valid for 

• Dilute particle concenfrations 

• Uniform particle size and type 

• No viscoelastic or shear 
properties 

Finite element and 
difference methods 

Computationally intractable without 
simplified microstructure (repeating 
cell, etc.) 

Multipole approaches Current results: 

• Longitudinal waves in dilute 
disordered media 

• Longitudinal and shear waves in 
simple lattices 

• Electromagnetic waves for 
modest clusters and particle 
packings 

T-matrix, fast multipole, and 
recursion methods increase 
computation speed 

Electromagnetic and both longitudinal 
and shear waves modeled for 

• Dense packmgs (up to 50%) 

• Large packings (up to 12,800 
particles) 

• Highly disordered 

• Variable particle sizes and types 

Methods are slow due to direct 
franslation of fields and iteration 
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CHAPTER 3 

APPROACH 

3.1 First Principles: Tlie Fundamental Equations 

3.1 (a) Electromagnetic Waves from Maxwell's Equations 

VMIST is a first-principles approach. It is therefore appropriate that we begin with the 

fundamental equations of physics and develop the theory that imderlie the VMIST computations. The 

fundamental equations for classical electromagnetism are the Maxwell equations. The Maxwell equations 

for a dielectric medium with no free charges or currents are the following: 

V><H = i^ (3,) VxE = -i^ (3.2) 
c dt c dt 

V-D = 0 (3.3) V-B = 0 (3.4) 

These are Maxwell's macroscopic equations, where D = £E and H = —B . Taking the curl of Eqs. 3.1 

and 3.2 yields 

1      ^ 

Vx(VxH)=-—(VxD) (3.5) 
c dt 

1     ^ 

Vx(VxE) = (VxD) (3.6) 
c dt 

Substitutmg Eqs. 3.1 and 3.2 back into Eqs. 3.5 and 3.6, and converting D to E and B to H, gives 

c' dt' 
Vx(VxH) = -f-^ (3.7) 

c' dt' 
Vx(VxE) = -^^ (3.8) 

Finally, we use the vector identity V x (V x A) = V(V • A) - V^ A and Eqs. 3.3 and 3.4 to arrive at 

wave equations for the electric and magnetic fields: 
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V^H-^^ = 0 (3.9) 

V^E-^^ = 0 (3.10) 

Assuming a purely sinusoidal, steady-state time dependence for the electric and magnetic fields of 

the form E(x,0 = E(x)e""*, Eqs. 3.9 and 3.10 become the familiar Helmholtz equations: 

(V'+A;')H = 0 (3.11) 

(V'+A:')E = 0 (3.12) 

CO   I— I ^ 
The wavevector k is defined as k = —Jep. . We can also defme an index of refraction TI as 1 = A— ■ 

c \ M 

Solutions to Eqs. 3.11 and 3.12 traditionally take the form of vector spherical wave fiinctions. 

Substituting the time dependence back into the Maxwell equations (Eqs. 3.1 and 3.2) yields conditions 

which must be satisfied by the form of the vector spherical wave functions that are used: 

VxH = ^^^E = -zit/7E (3.13) 
c 

VxE = ^H = ;-H (3.14) 
c rj 

3.1 (b) Elastic Waves from the Navier Equation 

The fimdamental equation for elastic waves is the Navier or elastic wave equation. The elastic 

wave equation for linear, homogeneous materials is the following: 

pl£ = (;i + 2//)V(V-u)-/iVx(Vxu) (3.15) 

The vector u is the displacement, and can be separated into a longitudinal (dilatational) part, \XL, and a shear 

(transverse) part, u^: 

u = u^+U5 (3.16) 
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These two vectors have the follovi'ing properties, which allow the elastic wave equation to be separated into 

two equations: 

VxUi=0      (3.17) V-Us=0        (3.18) 

Substituting Ui and Uj back into the elastic wave equation (Eq. 3.15) we get 

/>-^ = (A + 2//)V(V-u,)-//Vx(VxuJ (3.19) 

p—r^ = (A + 2/^)V(V-Us)-^Vx(VxUs) (3.20) 
dt 

Making use of Eqs. 3.17 and 3.18 yields the following: 

5/' 

a'u, 

= (A + 2//)V(V-Ui) (3.21) 

yO^^ = -//Vx(Vxu5) (3.22) 
ot 

We again use the vector identity V x (V x A) = V(V • A) - V^ A and the conditions given by 

Eqs. 3.17 and 3.18 to convert Eqs. 3.21 and 3.22 into solvable differential equations: 

= (A + 2;/)V^Ui (3.23) 

^ =//V^U5 (3.24) 

For time-independent (static) problems, we get Laplace's Equation for the longitudinal field 

(V^U;^ = 0) and for the shear field (V^U 5 =0). For time-dependent problems we get wave equations 

for the two vectors. Here, Ci and cs are the longitudinal and shear wavespeeds, respectively. 

C^VV—^ = 0    (3.25) C^V^U,--^ = 0    (3.26) 

,2^A±2^     (3.27) cl=^ (3.28) 
P P 
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As in the electromagnetic case, we assume a purely sinusoidal, steady-state time dependence for 

Ui and Us of the n(x,t) = u(x)e~'"' form. Eqs. 3.25 and 3.26 then become the familiar Helmholtz 

equations, where ki and ks are the longitudinal and shear wavevectors, respectively. 

(V' + kl)\l^ = 0 (3.29) (V^ + ks)\ls = 0 (3.30) 

kl=— (3.31) k's=^ (3.32) 
2       6) ,_,^ 7,2 _® 

In contrast to the electromagnetic vector Helmholtz equations, Eqs. 3.29 and 3.30 are usually not 

solved using vector functions. Rather, the vectors U/, and uj are expressed as a scalar potential O and 

vector potential 4*: 

U^=V<I) (3.33) Us=VxY     (3.34) 

Waves of the shear displacement field u^ are transverse waves and are therefore polarized in one 

du-ection. This implies that two shear displacement fields can exist perpendicular to and independent of 

each other. We can therefore define a second shear displacement field fi-om the vector potential ^ which is 

perpendicular to the one defined in Eq. 3.34: 

U5=Vx(Vx«P) (3.35) 

These two shear fields are analogous to the electric and magnetic fields since they are transverse 

and normally perpendicular to one another. In most applications, these two shear fields are denoted as the 

vertical shear field and horizontal shear field. These names arose from a very important problem in elastic 

wave scattering—^reflection and refraction from a planar boundary, where the shear wave components are 

either vertical or horizontal to the plane. This distinction is meaningless, however, when considering 

reflections and refractions from spheres. Due to the analogy with elecfromagnetism, and the lack of any 

other designation that would make sense, we will therefore refer to the two shear fields as the shear-elecfric 

(SE) field and shear-magnetic (SM) field. These designations will become more meaningfiil when the 

vector spherical wave functions are assigned. The elecfric and SE multipole fields will use the same vector 

spherical wave fimction, as will the magnetic and SM multipole fields. 
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For most acoustic scattering problems, the vector potential W is fUrther reduced to one or two 

scalar functions using symmetry or other conveniences of the particular problem. Although this simplifies 

the mathematics to some extent, generality is also lost. Additionally, solution of the boundary conditions 

requires the potentials to be re-transformed back into the components of the displacements. The boundary 

condition calculations therefore become unwieldy due to the presence of derivatives and cross-products 

(gradients and curls) in the solutions. 

To solve Eqs. 3.29 and 3.30 using vector functions, we need to express Ui and u^ in the 

appropriate basis. Since our coordinate system is spherical polar, the solutions to the Helmholtz equation 

are spherical harmonics for the angular part and spherical Bessel functions for the radial part. Vectors Ui 

and uj will therefore be comprised of a product of spherical Bessel functions and vector spherical 

harmonics, and are knovra as vector spherical wave fiinctions. Note that the vector spherical wave 

functions must also satisfy the conditions in Eqs. 3.17 and 3.18. 

Smce we have removed the time dependence from the fundamental equations, our solutions will 

be steady-state solutions. This means that the solutions^the vector spherical wave functions—^will 

intrinsically contam both the amplitude and phase information of the waves (the phase information is 

usually carried by the Icr argument in the spherical Bessel functions). This is an important feature to 

remember when we start scattermg waves from one sphere to another—^the wave functions and franslation 

equations will take care of the phase factors, so no extra effort will be required to account for the phase of 

the waves. 

3.2 Spherical Wave Functions for the Vector Helmholtz Equation 

A goal m developing the VMIST computational model was to develop scattering theories for both 

elecfromagnetic and elastic waves based on a compatible mathematical formalism. This goal required 

finding a set of spherical wave functions that solved the Helmholtz equations and other conditions for both 

types of waves, were consistent with the franslational addition theorems, were consistent with previous 

usage, and were not overly complex or elaborate. 
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The terms "vector spherical harmonic", "vector spherical wave function", and "vector multipole 

function" have been used interchangeably in the literature, which may give rise to confusion. In this work 

we will be more precise and reserve the use of the term "vector spherical harmonic" for functions with only 

an angular dependence, primarily the pure-oi-bital and pure-spin vector spherical harmonics. "Vector 

spherical wave functions" are oscillatory functions with both angular and radial dependencies, but are not 

necessarily constructed from vector spherical harmonics. For example, Stratton constructed the L, M, and 

N vector spherical wave functions using only Legendre polynomials, sines, and cosines.^ Finally, "vector 

multipole functions" will refer to a specific type of vector spherical wave function comprised of vector 

spherical harmonics as defined above. This usage is consistent with many modem authorities on the 

subject.''^'^^-^''^^ 

Although the vector spherical wave functions have taken many forms in the literature, there is 

universal agreement as to the form of the scalar spherical wave functions. The scalar spherical wave 

functions are simply defined as expansions of the product of a spherical radial fiinction with a spherical 

harmonic: 

^ = t.t.'Skr)Y„^iO,cp) (3.36) 
n=Om=-n 

The z„(kr) represents a spherical radial function dependent on the type of waves to be described (a spherical 

Bessel Unction j„(kr) for standing waves, a spherical Hankel ftinction of the first kind hj'^(kr) for outward 

propagating waves, or a spherical Hankel function of the second kind hf'(kr) for inward propagating 

waves). The spherical harmonic can alternately be replaced with Legendre polynomials for the 0 

dependence and sine-cosine expansions for the cp dependence. The scalar spherical wave functions are 

most useful for modeling scalar potentials. 

There are two sets of definitions for vector spherical wave function that have been extensively 

used in the literature and for which translational addition theorems have been derived. The L, N, and M 

wave functions defined by Stratton are the older of the two sets, but are still in wide use today, especially in 

the field of optical scattering.' (For brevity, these functions will be referred to collectively as LNM wave 

fiinctions.) In spherical polar coordinates these functions are given as 
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L„„ =—z„(^)P„'"(cos^)exp(zm^)e, 

^-z„{kr)^^"f'^\xv(imcp)e, (337) 
r 00 

+ ——K(^)]    "^^     ^exp(fm(;)K (3.38) 
kr or 86 

+ T^^^K (^)]C (cos^) exp(zm(?))e^ 
Arsin^ or 

M„„ = -r^ z„ (kr)P„"' (cos ^) Qx^{im(p)eg 

,,    BP"'(cos0)      ,.     ,. 
- z„ (^) ^^-^^ exp(?w ^)e^ 

(3.39) 

For convenience we have replaced the original even and odd function notation—cos(m^) and 

sin(mp)—with the more modem exponential notation—exp(imp). Stratton defined the LNM wave 

functions as solutions to the vector Helmholtz equation for electromagnetic fields.' The electric and 

magnetic fields are given by a linear combination of the N and M wave functions. 

The more modem solutions for the vector Helmholtz equation in spherical coordinates are the 

vector multipole fields which use pure-orbital vector spherical harmonics. The spherical wave functions 

defined by the vector multipole fields are the longitudinal, electric, and magnetic multipole fields, 

respectively:'*'''''' 

A„„(r;Z) = J^^„-.(^)Y:;'(^,^) + ^^^'r,Akr-)Y::\d,^) (3.40) 

A„Jr;£) = ^|^V,(^)Y:;'(^,^)-^^z„,,(^)Yr(^,9') (3.41) 

A„„(r,M) = z„(kr)Y"„„(0,(p) (3.42) 
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The notation for the multipole fields are from Greiner and Maruhn, and for the vector spherical 

harmonics from Varshalovich."''"^ In the literature, these vector spherical harmonics are either equivalent 

or closely related to the V vector spherical harmonics of Edmonds,"* the T vector spherical harmonics of 

Rose,"" and the X vector spherical harmonics of Jackson."' The vector multipole fields are directly related 

to the elecfromagnetic vector potential. In terms of the vector multipole fields, the eleefric and magnetic 

fields are the following: 

E(r) = ik[A(r, E) + A(r;M)] (3.43) 

H(r) = ik[A{r,E) - A{r;M)] (3.44) 

By converting the Legendre and exponential fiinctions in the LNM wave functions to spherical 

harmonics, we can find how the LNM wave functions are related to the vector multipole fields. We find 

that the vector multipole fields are related to the LNM wave functions by the following normalization 

constants: 

A    ^    r^    T      1/  n'"   2« + l(»-ffl)! 
A„„(.;i) = L„„-(-i) ^-^j^—^, (3-45) 

A   (rE) = ^   —^ (-ir r'^''^^""^^' (3.46) 

A   (rM) = M i \2n^\{n-m)\ 

Note that the normalization constants differ for each of the fields, rising from the differences in definitions 

between the two formulations. The LNM wave functions and vector multipole fields are therefore not the 

same fiinctions! 

Both the LNM wave functions and vector multipole fields are suitable for electromagnetic wave 

functions. The vector multipole formulation is preferred, however, since the vector spherical harmonics are 

more concise and have useful orthogonality properties, vector differentiation formulas, and integral 

solutions in the form of Clebsch-Gordan coefficients. Both Sfratton's LNM wave functions and Rose's 

vector multipole fields have been used for elastic wave functions as well, but mostly for simple scattering 
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problems such as that for a single sphere. Consistency problems arise, however, when both sets of 

formalisms are applied simultaneously to electromagnetic and elastic scattering theory, or when they are 

combined with translational addition theorems. 

The first inconsistency arises from our definition of the shear displacement fields as derived from 

the Navier equation: 

U,^=-VxT (3.48) •SE k 

«.M=;^Vx(VxT) (3.49) 

Note the inclusion of the Ilk and Ml^ factors to normalize the derivatives of the spherical Bessel functions. 

To have u^^ and USM in vector multipole form, we start from a definition for the vector potential T that uses 

a vector spherical harmonic and a form similar to that of the scalar potential <I) (Eq. 3.36): 

^ = Zi;^«(^)Yl(^,^) (3.50) 
n=0 m--n 

This vector potential does not, however, give rise to the standard vector multipole fields when put 

into the defmitions for the shear displacement fields. Although u^ results in the same magnetic multipole 

field (Eq. 3.52), VLSE results in a modified form where the Km(r:E) is multiplied by an i (Eq. 3.51): 

|vxY„„=/A„„(r;£) (3.51) 
k 

-lvx(Vx^„J=A„Jr;M) (3.52) 

The second inconsistency arises from the translational addition theorems. The translation of the N 

and M vector spherical wave functions from one coordinate system to another is expressed in the following 

symmefric form: 

fsO fi=-v 

i'=0//=-v 
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The SI"" coefficient is a "direct" translation coefficient, expanding field N in terms of N', and 

field M in terms of M'. The T™ coefficient is an "indu-ect" translation coefficient, expanding field N in 

terms of M', and field M m terms of N'. Note that this transformation is symmetric with respect to N and 

M. This symmetry is not preserved, however, with the vector multipole definitions of Eqs. 3.40-3.42. For 

the standard vector multipole field formalism, two independent "indirect" translation coefficients (differing 

by a factor of;) are required to translate between electric and magnetic multipole fields. 

This conclusion has been verified with numerical testing of the translational addition theorems, 

which has shown that the symmetric form of the theorems is consistent with the definition of the L, N, and 

M wave fiinctions, but not with the original definition of Rose's vector multipole fields. 

To be consistent with definitions for both the electromagnetic fields and shear displacement fields, 

and to be able to use the translational addition theorems in the simpler symmetric form, we need to modify 

the definitions for the vector multipoles as follows: 

U = -VO (3.55) 
k 

V = -VxY (3.56) 
k 

W = ^VX(VXT) (3.57) 
iC 

To avoid confusion with the LNM wave functions and vector multipoles in Eqs. 3.40-3.42, we 

shall call these fimctions UVW multipole fields. They are solutions to the Navier equation as well as the 

Maxwell equations. The electi-ic (V) and magnetic (W) multipole fields correspond to the SE and SM 

shear displacement fields in the elastic wave problem, Figure 3-1, whereas the longitudinal multipole field 

(U) naturally corresponds to a dilatational displacement field. Figure 3-2. 
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FIGURE 3-1. Electric or V multipole fields (top), and magnetic or W multipole fields (bottom). Adapted 
fi-omMie(1908).* 

n = 2 

FIGURE 3-2. Longitudinal or U multipole fields of order n, shown as deformations of a spherical surface. 
Adapted from Greiner and Maruhn (1996).''^ 
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The form of the scalar potential is the same as for the scalar wave function (Eq. 3.36), and the 

resulting longitudinal UVW multipole field is the following: 

U„„ = ^^^«-. ikr)Y"J (0, <p) + ^^^„.i (^) Yr iO, <P) (3-58) 

The forms for the electric and magnetic (SE and SM) UVW multipole fields are the following: 

^- -•)||^^.-.(*^)Y:;'(e.^)-,-^^z,.,(fo-)Yr(9,«»       (3.59) 

W.,=z,(fc-)Y1 («,«!) (3.60) 

The UVW multipole fields are identical to the vector multipole fields of Rose"'' and Greiner and 

Maruhn''^ (Eqs. 40-42), except for a factor of/ multiplymg the electric multipole field: 

U„„=A„„(r;I) (3.61) 

V„.=/A„„(r;£) (3.62) 

W„„=A„„(r;M) (3.63) 

We fmd that the multipole fields V and W are also essentially the N and M wave fiinctions, but 

now with the same normalization constant: 

V   =N / 2» + l(n-m)! 
"""       "'"V(«)(n + 1)^       i   4;r   (« + m)! 

The UVW multipole fields (Eqs. 3.58-3.60) are therefore valid for electromagnetic waves and 

consistent with the traditional solution approach for the Navier equation. Because of the relative merits of 

the vector multipole formalism, the modified vector multipole fields are also more attractive as a set of 

spherical wave fiinctions than the LNM wave fiinctions. 

Using Eqs. 3.43-3.44 and Eqs. 3.61-3.63, we find that the UVW multipole fields are related to the 

electric and magnetic fields as follows: 
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E(r) = k[y(r) + m(r)] (3.66) 

H(/-) = A:[V(r)-JW(r)] (3.67) 

Because the vector multipole fields were modified to be consistent with the definitions for the 

shear fields, the UVW multipole fields are related to the elastic displacement fields in a more direct and 

simple manner: 

u,(r) = V(r) (3.68) 

nsE(r) = y(r) (3.69) 

u,^(r) = W(r) (3.70) 

Finally, we note that the UVW Navier multipole fields as defmed in this monograph differ from 

the V, W, and X vector spherical wave functions defmed by Hill (which are not presented here due to their 

lack of general use in the physics literature)."^ It is unfortunate that only a limited supply of appropriate 

symbols exists for naming fiinctions that have a plurality of definitions and usages in the literature. The 

accidental re-use of some vector field symbols is unavoidable in such a case. 

3.3 Boundary Condition Solutions for Single Sphere Scattering 

3.3 (a) Solution Method 

With the multipole fields U, V, and W we can now formulate both the electromagnetic and elastic 

wave fields in spherical coordinates. For scattering from a single sphere, the wave fields can be divided 

into an incoming (incident) external field, a refracted internal field, and an outgoing (scattered) external 

field. The forms of the spherical Bessel functions in U, V, and W for each of these fields are listed in Table 

3-1. Each of the wave fields will also have amplitude coefficients associated with them. These amplitude 

coefficients are designated m Table 3-2 and shown schematically in Figure 3-3 for elastic waves. 
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TABLE 3-1. Spherical Bessel functions for wave fields in the single sphere scattering problem. 

pR^gion and Wave Type 

Exterior to sphere; Incident 

Interior to sphere; Refracted 

Exterior to sphere; Scattered 

Spherical Bessel Function 

h?(k^r) 

JniKr) 

h':\k^r) 

TABLE 3-2. Amplitude coefficients for wave fields in the single sphere scattering problem. 

l%l»Stic Waves ' 

,, Ipcid^nt Field 

Longitudinal (ut) 

Shear-electric (USE) 

Shear-magnetic (USM) 

I Electromagnetic Waves 

Electric multipole (V) 

Magnetic multipole (W) 

Refi^acted Field 

5n 

£>„ 

Scattei^dl'ieldl 

Hm 

Jm 

Longitudinal 
(red) 

Electric 
(or t-shear, green) 

Magnetic 
(or r-shear, blue) 

'nm 

Incident 
Waves 

Refracted 
(Interior) 
Waves 

nm 

Scattered 
Waves 

FIGURE 3-3. Diagram of incident, lefiacted, and scattered elastic waves for smgle particle scattering, with 
associated amplitude coefficients. 
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Given the incident field, the amplitude coefficients of the refracted and scattered fields can be 

solved by solving the boundary conditions on the surface of the sphere. For electromagnetic waves, the 

boundary conditions are continuity of the tangential components of E and H. For elastic waves, the 

boundary conditions are continuity of the displacements and stresses. The general form of the boundary 

conditions is therefore 

pi Incident   , T? scattered _ T? refracted H 71 "l 

where F is a general vector multipole field. 

These boundary conditions are typically presented in the literature as scalar equations and the 

solutions given without the intermediate steps. This is misleading, however, since rigorous solution of the 

boundary condition equations requires that they are solved in vector form. Although this point is not often 

addressed in the literature, it is important since vague, inexact, and incorrect statements and derivations 

have been published. "•^'■^'' 

Mie scattering will be used as an example, although the arguments apply to elastic wave scattering 

as well. Although the Mie solutions are well-established and unquestionable due to their correctness, the 

mathematical procedure for arriving at the solutions from the boundary conditions has often been either 

obscurely or incorrectly published. The widespread use of the LNM wave functions has additionally 

created confusion due to their cumbersome form and orthogonality relationships, and the confiision remains 

when spherical harmonic functions are also used to solve the Mie scattering problem. 

The problem arises over the use of orthogonality to solve the boundary condition equations for 

spherically-symmetric scattering problems. A simplified version of the mathematics is presented in order 

to get to the core of the problem. Rendered mto scalar components, the boundary condition equations are 

of the form 

■pincident   ,   rfscattered _ rprefracted ^o ^-^s 

where F^ denotes the x-th scalar component of the field. The mcident, scattered, and refracted (interior) 

fields are comprised of multipole expansions of spherical wave functions: 

00 +00 

F.=t.t.^n''r,(kr)Y„Se,cp) (3.73) 
n=0 m=-oo 
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Here, A„„ is the amplitude coefficient and z„ (kr) represents a spherical Bessel or Hankel function 

appropriate to whether the wave is traveling toward, away from, or inside the sphere (see Table 3-1). An 

example of such boundary conditions include the tangential components of the electric and magnetic fields 

in Mie scattering, here broken down into scalar components as presented in the literature: 

pincident   , pscatlered _ rprefracted /o rj4\ 

■pincident   , ^scattered _ prefracted ^-j ^r\ 

Trincidenl   , rrscattered _ Tj-refiacted ^T /y/-s 

TTtncident   , rrscattered _ Trrefracted /-, q^\ 

There is no problem and the solutions are straightforward if all of the fields have spherical 

harmonic terms of the same multipole order (n,m). In terms of the multipole expansions, the boundary 

condition equation is 

00 +00 00 +fO 

n~0 m=-co n=0 m=-co C^ 1^^ 

00        +<Xi 

Z'ZB„J„(kr)Y„^{e,<p) 
n=0 m=-oo 

To solve this equation, we first multiply all of the terms in the expansions by Ijj^ (0, (p) and then 

integrate over ^and cp. The spherical Bessel and Hankel functions are evaluated at the sphere's surface (r 

= a). Integration over the stirface of the sphere removes the summations and spherical harmonic terms due 

to orthogonality: 

Z E^™ \\daY;^{9,cp)Y„„{e,cp) = f^ ZAJm^M. = ^M (3-79) 
n=Om=-n n=Om=-n 

The indices « and m are now N and M, resulting from multiplying the field expansions by 7^jj^ (0, cp) and 

integrating over (9 and p. This effectively pulls the amplitude coefficients out of the expansions and allows 

them to be directly related in an equation: 
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CO +C0 

CO +00 

„=0m=-oo (.J.8UJ 

<0 +C0 

n=0 m=-oo 

J^//^^) (^a) + C^h^^ (ka) - B,^j, (ka) = 0 

The final equation relating the amplitude coefficients is 

A,^hf{ka) + C^h^^ka) = B,^j^(ka) (3.81) 

A problem arises, however, when some of the fields have spherical harmonic terms of different 

(n,m) order than the others. This occurs in both electromagnetic (Mie) scattering and elastic wave 

scattering. A simplified example is the following: 

n=0 m=-oo 

oO        +00 

EE^-A(^)^"-'.'«(^'^) 

n=0 m=-» n=0 m=-co ,- „«> 

n=0 m=-oo 

Note the spherical harmonic terms of order (n+l,m) and {n-l,m) in the field expansions. Multiplymg all of 

the terms in the expansions by }^^ {6, (p) and then integrating over 6 and ^ does not, however, cause 

these terms and their associated amplitude coefficients to disappear. Rather, the integrations will be of the 

form 

E E^- \\daY;^{e,(p)Y„.,_,„{e,cp) = E t^„Ar..A 
n=0 m=-n "=0 m=-n 

00      n 
(3.83) 

n-0m=-n 

and 

E E^- JJ^^^;M(^.^)^«-...(^.^)=E EA.^^.„-.^M„. 
00      n 

«=0 m=-n 

(3.84) 
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Note that the integrations pull out amplitude coefficients of either lower or higher multipole order, 

but that they do not force the terms to vanish. Because we are performing an integration within an 

expansion of many terms, the integral pulls out a coefficient appropriate for the spherical harmonic order it 

is associated with. In other words, because we have to integrate all of the terms in all of the expansions, we 

must pull out each of the coefficients independently of the coefficients in the other expansions. We are 

therefore required to pull out coefficients of different {N.M) order due to the spherical harmonic they are 

associated with, but not due to the spherical harmonics in the other expansions. The resulting boundary 

condition equation is therefore 

CO +00 

E E4.^f (^).=. \\daYUe,cp)Y„se,(p)+ 
«=0 m=-oo 

n=Om=-x (3.85J 
CO       +to 

E t^nJr.(kr)r-a jjdQYU0,<p)Y„_,J0,<p) = 
n=0 m=-co 

A^^h^^^ (ka) + C^_,_^h^\ (ka) - B,,,^^j,,, (ka) = 0 

Note that the delta functions also change the multipole order of the radial functions. The resultant 

coefficient equation is 

A^h^^^ (ka) + C^_,_^h^\ (ka) = 5^,,^^,, (ka) (3.86) 

This equation relates coefficients of one multipole order (N) with coefficients of higher and lower order 

(N+1 and N-1). In other words, the equation mixes coefficients of different moments, resulting in recursive 

equations for the coefficients. For brevity, the coefficients of higher and lower multipole order will be 

called cross-order coefficients. 

The cross-order coefficients in the solutions are problematic since they make the boundary 

conditions unsolvable. There are now more unknowns than there are equations to solve, and the scattering 

problem can therefore not be solved in closed form. However, many published presentations of this 

solution method casually throw away the cross-order coefficients using the orthogonality argument. An 

example of such a justification is the following: 
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"The summation sign in these expressions is removed by making use of the orthogonality 

properties of the trigonometric and Legendre functions. As a result only coefficients of the same 

order have to be compared."" 

Such an application of orthogonality is equivalent to what was demonstrated above with the scalar spherical 

harmonics, and is therefore not a correct approach for dispensing with the cross-coefficient terms. Similar 

errors have appeared in the solution for elastic waves. Einspruch and Truell, and Einspruch et al. err in that 

they forget they are integrating over an infmite summation of terms in the boundary conditions for elastic 

wave scattering, but nonetheless arrive at correct solutions by mis-applying the orthogonality conditions for 

the Legendre functions.^^'^'' 

The classical solutions for Mie and elastic wave scattering do not contain cross-order coefficients, 

and can be shown to be numerically correct to the precision of modem computers. Yet, as has been shown, 

the cross-order coefficients cannot be eliminated with only the use of orthogonality conditions for scalar 

functions. Since the cross-order terms in Eq. 3.86 must vanish in order to arrive at a solvable scattering 

problem {i.e., with the same number of equations and unknovras) and m order to be numerically correct, 

one may argue that the cross-order terms should either cancel each other out or are numerically equivalent 

to zero. We have found that such a result cannot be demonstrated either analytically or numerically. Since 

the original approach of applying orthogonality must be kept in order to extract the coefficients fi-om the 

summations, another mathematical method or procedure must exist to force the cross-order coefficients to 

vanish. 

To eliminate the cross-order terms, the boundary conditions require an extra constraint that is not 

available with the use of the orthogonality of the scalar components. Fortuitously, the orthogonality of the 

vector spherical harmonics (Eq. 3.87) provides such an extra constraint (the Si!) that critically forces the 

cross-order terms to vanish. 

]d(p]d{cose)Y'^^ *ie,(p)Yiie,(p) = 5,,8^j^^ (3.8?) 
0 0 



40 

Therefore, by retaining the vector form of the boundary condition equations and applying orthogonality of 

the vector spherical harmonics, the Mie scattering solutions can be derived in a rigorous and unambiguous 

manner. 

The vector solution method for Mie scattermg is summarized here as an example. In vector form, 

the transverse electric and magnetic field boundary conditions are the following: 

^inc,transverse      ^ set .transverse      ^ ref .transverse ^  '     ' 

TT I   TT = H G 89") 
inc,transverse set .transverse ref .transverse ^  "     ' 

To find the vector form of the transverse electric and magnetic fields, without resorting the scalar (9 and ^ 

components, we first rewrite E and H in terms of our multipole fields V and W: 

E,„. = t EA:^,k„V„Jr) + /&„„W„„(r)] (3.90) 
n=0 m=-n 

E„^ =2 2]A:^,[c„„V„„(r) + /<„W„„(r)] (3.91) 
n=0 m=-n 

E.„ =1; 2:^„,k„V„„(r) + (/;„W„„(r)] (3.92) 
n=0 m=-n 

H,„. =77^.X I^e.<k.V„„(r)-za„„W„„(r)] (3.93) 
«=0 m=-n 

^ref = '/int E E^in. k« V„„ (r) - /C„„ W„„ (r)] (3.94) 
«=0 m=-n 

^sc. = Ve^ti, i:^e.,l/„.V„„(r)-r.„„W„„(r)] (3.95) 
n=0 m=-n 

Instead of breaking up the full vector equations into scalar transverse components, we will retain 

the vector character of the equations and therefore gain advantage of usmg the additional orthogonality 

condition attendant with the vector spherical harmonics. Since the magnetic multipole field W has no 

radial components, it is abeady fully transverse. We can fmd the transverse vector associated with the 

electric multipole field V by taking two successive cross-products with a normal radial vector n^: 
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kr 

V„„ (r),„„^,„, = n, X (n, X V„„(r)) 

"^^rYr(^,^) + . 
2n + l 2« + l 

Yr(^.9') 
(3.96) 

The Et,a„sverse and Ht,a„sverse fieWs in the boundary conditions (Eqs. 3.88 and 3.89) are now replaced 

with the expanded forms of the V^nsverse and W„ansverse fields containing the spherical Bessel fiinctions and 

vector spherical harmonics (Eqs. 3.96 and 3.60). After some algebraic manipulations, the orthogonality 

conditions for the vector spherical harmonics are applied twice to each boundary condition. The first 

application involves multiplication and integration with Y^^' * (9, (p) , and yields an independent 

coefficent equation for each of the two boundary conditions: 

^NM'^ext 

^NM^-ext 

^NM'^mi 

+ 

(3.97) 

= 0 

^NMVexl'^ex 

JNMVexl'^a 

(N + l)^^^^-h^^l(K,,a) 
ft^rf^ 

+ 

(N + \)^'^^-h^Uk^,a) 
K.,oc 

(3.98) 

^N + l)M^^-j,^,ik,„,a) 
^int« 

= 0 

The second application involves multiplication and integration with Yfji^ *(9,(p), and also 

yields an independent equation for each of the two boundary conditions: 

b^KX\K.,(^)+fNMKA\k^>(^)-dMMKjAKx(^) = 0 (3.99) 

The above four equations are the correct equations for solution of the Mie scattering coefficients. 

Note that none of these equations contain the cross-ordser coefficient terms which would remain if we 
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would have used only the scalar equations. The extra constraint provided by the orthogonality of the vector 

spherical harmonics allows a rigorous method for removing the cross-order terms. 

The solution of the Mie scattering problem with the use of pure-orbital vector spherical harmonics 

is not a common approach, and few references have been found which use this method or show how the 

orthogonality of the these ftinctions are necessary for solving the boundary conditions. It should be noted 

that Bohren and Huffman state that the use of the orthogonality of the LNM vector wave functions is 

requu-ed to solve the Mie boundary conditions, but do not show the details of the solution.'* Knopoff also 

mentions that integration over the vector wave functions L, M, and N is required to solve for the scattering 

of shear elastic waves by a sphere.^' 

In comparison to the LNM vector wave functions, vector wave functions constructed from pure- 

orbital vector spherical harmonics (such as the UVW multipoles) have advantages in providing an elegant 

and rigorous solution to the Mie boundary conditions. The orthogonality conditions for the vector spherical 

harmonics are simpler, and the manipulation of the functions are more straightforward. Of additional 

importance is the fact that the pure-orbital vector spherical harmonics are harmonious with the 

mathematical descriptions of continuum mechanics, quantum mechanics, and gravitational radiation 

physics. 

3.3 (b) Solutions for Electromagnetic Wave Scattering 

The boundary condition solutions for electromagnetic wave scattermg from a sphere are given by 

Eqs. 3.97-3.100. The results for elecfromagnetic scattering yield four linear equations with four unknowns. 

In matrix format these equations are 

Vinf^NO Vext^i NO 

J Nl 

0 
0 

0 

0 

m 

0 

0 

J. 

0 

0 

V, 

'NO ^-^NO 

Vinf^Nl      ~Vext^N\J 

-NM 

-NM 

*NM 

fr \JNM J 

NO ^NlAVextG, 

^NM^m 

^NM^NO 

'^NAiVext^Nl 

(3.101) 

The indices of refraction are Tji^t for inside the sphere and T/ext for outside the sphere. The notation shortcuts 

are the following, where a is the sphere's radius: 



^m ~ Kxt 

^m ~ '^exl 

T     -Ir 

^NO - '^exl^N (Kxl^) 

f^NQ ~ '^ext'^N V^ext^) 

•^m =^inti//("-int^) 

Kx,cc 

{N + \) ^'^^^-''"^-hUK.cc) 
Kt^ 
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(3.102) 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

Solution of this matrix is readily accomplished, yielding the famous Mie coefficient solutions for 

the internal refracted fields and external scattered fields: 

^NM ~ 

^NM " 
_ %M Winf^^O^Wl ~Vext'^m^m) 

'Hexl^NO'^m      Vint^m^NO 

M Amy *NM 

/. NM 

(3.108) 

(3.109) 

(3.110) 

(3.111) 

3.3 (c) Solutions for Elastic Wave Scattering 

Solution of the boundary conditions for elastic wave scattering are more involved, presenting a set 

of six linear equations for six unknowns. Three of these equations evolve from the continuity of 

displacement boundary condition, which is a simple equality between the sum of the incident and scattered 

waves and the sum of the interior refracted waves. Although these equations are solved (mcorrectly) in 
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scalar form in most published articles, they are also readily solvable in vector form, and yield the Same 

three linear equations. 

The other three linear equations for elastic wave scattering come from the continuity of the 

stresses, which is trickier since the stress is a tensor and not a vector. Usmg the old (incorrect) approach, 

one can equate the scalar stress components in spherical coordinates, which are complex but available from 

Graff and others.'**'"' Although the approach is incorrect, it yields the correct three linear equations if 

cross-order terms are thrown out. 

The correct approach would be to derive boundary conditions preserving the vector properties of 

the displacement. This is difficult since the equation relating sfress and displacement is the tensor equation 

cr, =C,^,f^,, where <Ty is the stress tensor, Cyj, is the three-dimensional stiffness tensor, and f^ is 

the sfrain.''" The sfrain tensor derives from the displacement by 

1 5M,    dHj  L + L 
, dxj     9x,. 

(3.112) 

Since we are concerned with isofropic solids, the stress-strain relationship reduces to Cauchy's law: 

CT,=A^^^,+2//^, (3.113) 

However, we are still confronted with a tensor equation which is difficult to reduce to one or more 

vector equations (which would be necessary to use the orthogonality of the vector spherical harmonics). 

One possibility would be to use tensor spherical harmonics to solve the stress boundary conditions, but that 

would imply a serious overhaul of our spherical wave ftinction forms. 

We are confident that a rigorously correct solution method exists for the sfress boundary 

conditions. However, in the interest of time and effort, the linear equations from the scalar sfress 

components were used minus the cross-order terms. The final solution mafrix has the following form: 
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Uj) -Uh) Uj) -Uh) 
Uj) -T,(h) T,,(j) -T,,(h) 

0          0          0 0 

0          0          0 0 

0 

0 

0 
0 

0   YD  ^ 
0 
0 

0 

■"NM 

E NM 

H NM 

'■ NM 

A,^T,ig) + B,^Ug) 
AmUs) + B,^T,,{g) 

C^Ug) 

^NM^i\S) 

(3.114) 

Fortunately, the solution matrix separates into two smaller matrices: 

TeU)   -Te(h)    UJ)    -T,(h) 
UJ)   -Uh)    UJ)    -UK) 

NM 

NM 

NM 

U,Mg) + s^Us)^ 
A,^Ug) + B^Ug) 
A,^Ug) + B,^Ug) 

A,^Ug) + B,^T,,{g)^ 

and 

%U) -Uh)\(F^\  (c^Ug)\ 
UJ) -UhX \^NM J 

■NM-^3 

y-^NM^yS) 

(3.115) 

(3.116) 

The;, h, and g in the T-functions refer to the type of spherical Bessel function that is in the fiinction {/ = 

j„ (kf), g = ^f ^ (^) > ^ = ^r^ (^) }• The 2x2 matrix is readily solved with simple algebra. The 4x4 

matrix was solved for a generic matrix on Mathematica. The algebraic expressions were then programmed 

into the VMIST algorithm. 

The T-symbols are complex functions of spherical Bessel functions, multipole order N, the 

wavevectors ki and ks, and the sphere radius a: 

Zj^JCjO) 

Uz) = z^{ksa) 

k^a 

(3.117) 

(3.118) 

(3.119) 
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U^) 

Ts{z) = 
^(N)(N + l) k^a 

Uz) = h -Az^(k^a) + 2ju\ 
(N-l)(N)    N + l 

(k^af       N + 2 
z,(k,a)+'^---^'^ 

kj^a 

T^(z) = 2ijuks,l(N)(N + l) 
(kgof k^a 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

T^(z) = juk^ (N-V)^4^-'NAks^) 
kga 

T^(z) = 2^k^ (N-l) 
k^a 

T,o(^) ^ 
i^ks 

V(AO(ivTi) 
2(N^-1)    N + l 

{k^af      N + 2 
z^(V) + ^^^ 

(ksa) 

(3.124) 

(3.125) 

(3.126) 

3.4 Translation of Scattered Fields 

3.4 (a) Vector Addition Theorem 

A realistic description of multiple scattering at the microscopic level requires that the scattered 

fields fi-om each particle interact with the other particles (Figure 3-4). Since the coordinates of the wave 

functions are specific to each particle, the fields scattered fi-om particle a will be in a's coordinate system. 

However, fields incident to particle P need to be in P's coordinate system in order to calculate the 

interaction with particle p via the single particle scattering solutions. Therefore, particle a's scattered wave 

fields need to be transformed into particle P's coordinate system. This is accomplished with the use of 

translational addition theorems. These theorems are the "main engme" driving the VMIST multiple 

scattering algorithm. 
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Initial 
Wave 

Final 
Wave 

FIGURE 3-4. Diagram of mtdtiple scattering of vector multipole fields, showing how each of the three 
fields U (red), V (green), and W (blue) require translation from each sphere to every other sphere. 

As summarized in Chapter 2, many versions of the translational addition theorems have been 

derived. Most are mathematically awkward or were derived for specific wave flmctions such as the LNM 

vector spherical wave functions. For the VMIST approach, addition theorems for wave functions based on 

pure-orbilal vector spherical harmonics were desired. It was also desired that the addition theorems be in a 

more elegant form, and use commonly recognized fimctions and symbols such as Clebsch-Gordan 

coefficients. Finally, flie complex nature of the addition theorems and their importance in the algorithm 

impelled that fhey be rederived and tested for correctness and convergence. The addition theorems were 

therefore rederived using a straigjitforward integral transform approach which has not been reported 

previously in the literature. 

In Section 3.3 the coefficients for the scattered fields (two for the electromagnetic case, three for 

the elastic wave case) were solved for a single sphere. In order to compute multiple scattering using these 

vector fields, we need to translate the fields from the coordinate system of the scattering sphere to those of 

another sphere located at an arbitrary position. The first scattering sphere will be subsequently referred to 

as the "transmitting" or a sphere, and the second sphere as the "receiving" or p sphere. The coefficients, 

coordinates, radius, and elastic properties for each sphere are denoted in Table 3-3. 
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TABLE 3-3. Coefficients, coordinates, and properties for the transmitting (a) sphere and the receiving (P) 
sphere. 

; Region Outgoing Waves tncoming Waves Coord 
1. 

Radius Properties Wave Vectors   . 

EM Elastic EM   ' Elastic EM Elastic ,EM' I',' Elastic 

Sphere 
a Jnm 

GJ' 

I  " ■'■nm 

da v" it" 4" 

Sphere 
P 

ay/ 

bj 
A P 
Bj 
C ^ 

Op 
ap rf y 

/ 
/fe^ 

ki 

Matrix r x^ r 
r* 

The global position vectors for the two spheres are Ra and Rp. The position of sphere a with 

respect to sphere p is therefore Kap= Ba - Rp- Figure 3-5 displays these position vectors. The coordinate 

systems for the a and p spheres are local coordinate systems, and are denoted in the above table and shown 

in Figure 3-6 along with the global coordinates of spheres a and p. 

Sphere (8 

Sphere a. 

FIGURE 3-5. Relative and global position vectors for spheres a and p. 
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Sphere /S 

Sphere a 

FIGURE 3-6. Local and global coordinates for spheres a and p. 

To solve for the scattered field coefficients of sphere p we need to find the mcident field 

coefficients for sphere p. The incident waves for p, however, are the scattered waves fi'om a. We 

therefore need to translate the multipole fields fiom the a coordinate system into the p coordinate system. 

First we note that the scattered a fields contain vector muMpole terms of the following forms: 

We now assmne the addition theorem for these terms will have the following form: 

an    y+1     -t-y 

(3.127) 

(3.128) 

(3.129) 

(3.130) 
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The expansion coefficients 'n.'j";"^(R„/,) are functions only of the relative position vector R„p, and can be 

calculated in the same manner as one would calculate the coefficients for a Fourier series. The coefficients 

are calculated from the following integral: 

0 -1 

The values of the scattered a/incident P multipole fields are only relevant at the surface of sphere P, 

therefore we integrate over the surface of sphere P with 0^ and (Og as our variables of integration. 

To evaluate this integral we first expand the dot product between the two vector spherical 

harmonics by rewriting the complex conjugate of a vector spherical harmonic as given by Greiner and 

Maruhn:'*' 

YL * (e,<p) = (-ir"'''X,-.(o,9) (3.132) 

We then expand the vector spherical harmonics into their scalar components using helicity basis vectors 

and the compact notation of Clebsch-Gordan coefficients as defined by Varshalovich et al.:"'' 

Yi {e,cp) = C-,,_,7,„,,e_, + C-,oF,„eo + C-,,,7,._,e,, (3.133) 

The scalar components of the two vector spherical harmonics are then multiplied together based 

on their helicity basis vectors. This mvolves computing the dot product of the helicity basis vectors, which 

does not yield the same result as one would expect from our experience with cartesian basis vectors. 

Whereas e^, • e^, = e_i • e_i = 0, we fmd that e^j -6^1* = e_i • e_i* = 1. However, 

CQ • Bfl = Co • Cp * = 1. The dot product between two vector spherical harmonics is therefore not as 

simple as separately multiplying the e^j, CQ , and e_i components. Rather, the e^i components multiply 

with the e_j components. The eo components can still be separately multiplied, however. The vector 

spherical harmonic dot product in our integral therefore becomes the following: 
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\V+A+! 

(3.134) 

We now use two expansion identities from Varshalovich et al. to finish the integration."' The first 

is the expansion of spherical waves in terms of bipolar spherical harmonics of rank L, valid for rj < r2. 

An 
V ZL + li^j^^o 

The second is the expansion for the bipolar spherical harmonics themselves: 

Substituting Eq. 3.136 into Eq. 3.135, the spherical wave expansion becomes 

(3.135) 

(3.136) 

(3.137) 

mi,m2=0 

Note that this is just the translational addition theorem for the scalar wave function 

z^ (kr)Yjj^ (0, (p) . We now rewrite this theorem m terms of our coordinate systems (Figures 3-5 and 3- 

6). Since r = ri - r2 and the vector from the a-sphere terminates on the surface of the p-sphere (r„ = ap - 

Rap), we have the following correspondences between the particle coordinate systems and the notation in 

Varshalovich et al. :'*'' 

(3.138) 

Note that the condition ri< rz is satisfied as long as the two spheres do not interpenetrate. Our spherical 

wave expansion can therefore be written as 

r = r„ 0 = 0^ (P = <Pa 

r,=fl^ 01 =0^ (Pl=<Pp 

^2 = Kp 62 = ®ap (P2=^ap 
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V -^'+l/,,/j=o 

(3.139) 

We now combine the spherical wave expansion with the dot product expansion: 

An 
V2/ + 1    /|_/j=o 

"q.".,.,-iQ:;-i.i.iCw../.,..i *(^/.'^/.)^...c^;,.^/.)^...(0.,,^„,) ■ 

+q:-,,,q-:;,,,_,c^-:;;,,„/,.,_, * c^,,^,)};,., (^,,^,)i^,., (©„,,«>«,). 
mi,m2=0 

(3.140) 

The above expression is now integrated over the surface of sphere p {Op and (pp).   Orthogonality 

dictates that /; = A, mi = // + 1, Wi = /A and /wi = // -1, respectively, eliminating the summations over /j and 

mx. The /2 and m2 indices persist, and are renamed;? and q for simplicity: 

(_!)....,     4^ X i;/'-'-^V(2A + l)(2;. + l)xCli,.oA(^«,)/^J^(M„,) 
V 2/ +1    p^o 

9=0 

r/,m+l 
'-'/.m+l,l,-!W,-/j-l,l,l*-'A,//+l P.9 

r/,m-l 

xj;,(©„^,^„^) 

(3.141) 

We can adjust the mdices on the Clebsch-Gordan coefficients in our addition theorem using the 

following relationship: 

/~iL,M   /- -isl^+l^-L/-iL,-M (3.142) 
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Furthermore, the Clebsch-Gordan coefficients impose conditions on the values for q, specifically q = m- n, 

thus eliminating one summation. There are no restrictions on the index/) that would remove the 

summation over;?, so it remains. However, since by the vector addition rules the last Clebsch-Gordan 

coefficient term implies A- + p = 1, therefore p = 1 - A,, we can deduce that/? < / + ;i and that the lower limit 

on/7 is \l - A|. These simplifications result in the following for the addition theorem: 

i+x 4;r(21 + l)(2/? + l) 
2/ + 1 

^l.m^-\,\,-\^X,^l■^\^-V^X,ii+\,p,m-fi "^ 

f~^n,m    (~<v,ii     f^l,"! 1 

^l,m-\XV-'X,n-\X\^X,ii-\,p,m-n 

(3.143) 

One final simplification is to incorporate a summation over x to simplify the Clebsch-Gordan 

coefficient sums in the bracket: 

/+/i 

p=\l-X\ 

1 

^ ^X.O.p.Q 2-1      l.m-T.l.T^X.fJ-T.lj^X.fl-T.p,! 

47t(2X + \)(2p + r) 
2/ + 1 

',m-ft 
f=-l 

(3.144) 

This results in a very compact form for the translational addition theorem for vector spherical wave 

functions. 

The Clebsch-Gordan coefficients can be evaluated using many expressions. A representation in 

the form of algebraic sums is given by Wigner: 47 

'1 

(c+r)\(c-r)\(2c+i) 
{a + a)\{a-a)\(b + P)\{b-p)\ 

(-Xf^P^'jc + h + a- z)\(a -a + z)\ 
z\(c -a + b- z)\(c + y- z)\(a -b-y + z)\ 

(3.145) 

where 
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■y (a + b + c + l)\ 

This was the expression used to compute the Clebsch-Gordan coefficients in the VMIST algorithm. 

3.4 (b) Scalar Addition Theorem 

Although the scalar addition theorem cannot be used to translate vector fields, it can be useful for 

translating potentials. It can therefore be used to translate the potential for the longitudinal field in elastic 

wave scattering. The scalar addition theorem has been published extensively, and is of the form 

i/=0 //=-v 

with 

j{2v + l)(2p + rj     0       „,m 
(3.148) 

3.4 (c) Direct Translation of Vector Fields 

The vector translation theorem (Eqs. 3.130 and 3.144) allows us to translate individual terms in 

the UVW multipole functions, but are not sufficient for translating the elastic or electromagnetic fields 

themselves. Further expressions therefore needed to be derived to translate the entire field expressions as 

given by Eqs. 3.58-3.60. 

In the course of this research it was found that there were two methods for translating the vector 

fields from sphere a to sphere p. First, the vector fields can be translated directly using the vector addition 

theorem (Eq. 3.144). Second, since the fields can be derived from scalar and vector potentials, the 

potentials of the fields can be translated using a combination of the scalar (Eqs. 3.147, 3.148) and vector 

(Eqs. 3.130, 3.144) addition theorems. Although the first approach is straightforward and therefore 

attractive, the second approach should be more computationally efficient since the scalar addition theorem 

is less complex and takes less time to calculate. 
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Both the direct translation method and potential translation method were developed and tested in 

this work for two reasons. First, development of both methods helped to identify and resolve problems in 

the theory. Since each method is developed from a different starting point in the theory, they result in 

mathematically different expressions. Additionally, the longitudinal field is translated using the vector 

addition theorem in the direct approach, but with the scalar addition theorem in the potential approach. 

However, the numerical results should be the same. Having both methods therefore worked as a check for 

the theory—if the numerical results did not agree then there was an error either in the wave function 

defmitions or in the addition theorems. Second, the computational speed of each method could be tested 

and compared to verify that the potential method was indeed more efficient. 

Although the incoming spherical wavefields will, in general, be comprised of terms of the form 

expansions of the incoming spherical wavefields can also be comprised of terms of the form 

where the spherical Bessel functionj; (kr) replaces the Hankel function of the the second kind h/^^(kr). 

This is the case for the vector plane wave expansion (see Section 3.5). Similarly, the addition theorems 

restrict the form of the radial function to a spherical Bessel function, and not a Hankel function of the 

second kind. Recall that our vector addition theorem is 

00      V+1       +V 

h^\KWL(0a,<p.) = XI Zni-:-(R„,)Yi(^,,^,) (3.151) 

where 

p=|/-A| V ^' + ^ 

1 

'^ ^Xfi,pfi  7 . ^!.m-T.].T^A.u-T.l.r^X.u-r.p.m- 

1 

I 
r=-l 

(3.152) 
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To obtain UVW multipole fields from the addition theorems, we must express the addition 

theorems in terms of spherical wave functions of order X. To do this we pull the Jx(kaft) term out of the 

translation coefficient and define a new translation coefficient -Z^'"'^ (R„^ ) : 

CO      v+l     +V 

hf'{K)Xse.,<P.) = E E E^S(R«.)A(^«/.)Y;(^,,^,)        (3.153) 
v=Cl X=v-\fi=-v 

Note that ap is just rp evaluated at the surface of the receiving sphere. The new translation coefficient 

^l',"'."(Ra/?) is just 

p=\l-X\ » ^' "^ ^ 

1 

(3.154) 

We are now in a position to compute how the longitudinal field U translates from one sphere to 

another. The outgoing wavefield from the transmitting sphere is 

U„„(rJ = G„ ^|^e\(^jYr (^,,^j+j^cc^jvr (^„,^, (3.155) 

and the incoming wavefield to the receiving sphere is 

^.f:i^fi) = AM l^^Uikap)Y:;\0p,<Pp) + .j^^l.r(kap)Y:;\e,,g>p) (3.156) 

Expanding the /zf^ (kr^ )Y'„„ ((9„, (p„ ) terms m the outgomg field (Eq. 3.155) with the addition theorem 

produces six terms. We regroup the franslated terms and equate them to the incoming field (Eq. 3.156) 

according to their vector spherical harmonic components. After some lengthy algebra we arrive at the 

following three simultaneous equations: 

2v + \ ^      yn-l,n,m   ,     I  W +1   y„+\^n,m 

2n + \ ''v-l,v,ft 
2n + l v,M 

(3.157) 
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2n + l 
V.,V,ft 

yi'  y   yn+l,n,m ^       yn-l,n,m   ,     i  "  '  ^   yn+l,n,m _ Q 

2n + \ 
v,v,tt 

A""" -G 
2v + l 

v + 1 
jn-\,n,m + « + l ^n+l,n,m 

2n + l  "''•"■'    nn + l  "''■"'' 

(3.158) 

(3.159) 

Note that there are two equations for the incident wavefield coefficient ^"" in terms of 

translation coefficients and the scattered wavefield coefficient G„„. We therefore have two solutions for 

translation of the longitudinal field. Numerical testing has verified that these two equations are equal. The 

following condition can therefore be derived for the translation coefficients (along with Eq. 3.158, which is 

a second condition on the translation coefficients): 

1 
Vv +1 

M J 
(3.160) 

We note that the above conditions can be used to build recursion relations for the vector addition theorem. 

Using the same approach for the electric (V) and magnetic (W) multipole fields, we will derive the 

incoming wavefield coefficients fi-om the translation expansions of the outgoing coefficients. The outgoing 

electric and magnetic (or SE and SM) wavefields from the transmittmg sphere are 

V„„(rJ = ^//„ ^|^e\(^JY;;>(^„,^j-j^Ail\(^jYr(^„,^J 

The corresponding incoming wavefields to the receiving sphere are 

(3.161) 

(3.162) 

V.,(r^) = /5., j^y..(^«,)Y;-'(^,,?',)-^|^7V.,(^a,)Y.r(^,,^,) (3.163) 

W.,(r,) = CjAka,)Y:^(0,>^,) (3.164) 

Similar to expansion of the longitudinal field, expanding the outgoing electric and magnetic fields 

with the addition theorem produces nine terms. Agam we regroup the translated terms and equate them to 

the incoming fields (Eqs. 3.163, 3.164) according to their vector spherical harmonic components. Again, 
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after the necessary algebra, we arrive at the following three simultaneous equations for the mcident 

wavefield coefficients B^,^ and C^,^ 

nnm _ 2v + l 

V + 1 

TT        i n + l   rjn-\,n,m       -j     yn,n,m     _ TT        I      ^       yw+l,n,m 

1^ + 1   y«-l,n,m 

'2« + l   ''■^''' 

7-     yn,n,m _ -TT        I      ^       yn+l,n,»i 

■nnm 2v + l 

V 
//„ 

/7 + 1 rn-\,n,m -iL^Z: 
2n + l 

H^ 
n rn+\,n,m 

2n + \ 

(3.165) 

(3.166) 

(3.167) 

There is only one equation for the C™ coefficient (Eq. 3.166). Again, the two equations for the 

B"'" coefficient have been shown to be equivalent with numerical testing, and therefore require the 
■Vfl 

following condition to hold true: 

4v H„ 
n + l 

2n + \ 
'yn-\,n,m   -j      yn,n,m H„ 

'^       rjrn+\,n,m 

2n + l 

-Vv + 1 H„ 
n + l rn-\,n,m -ii.^z::y"-H„ 

2/7 + 1 
v+l.v,// 

2n + l 

(3.168) 

Since the coefficients H„„ and /„„ are independent, the condition in Eq. 3.168 is actually two conditions that 

again may be usefiil for recursion formulas: 

1 r  I 7    r^M-l n m r~    r-rn+\.n.m ^ /_.   .   1     ryn-l.n.m f~l _ yn+\,n,m 

Vv+l Vv 

i,m (3.169) 

^/^•Cl::. + ^/v+T•^:;T;..=0 (3.170) 

In the more traditional S and Ttranslation coefficient notation (Eqs. 3.53, 3.54), we have the 

following for the direct electric-to-electric field (£->•£) translation: 

Y \ TT r^7~ A 2v + l 

v + 1 
n + i   yn-l,n,m _    I      ^       y«+l,n,m 

2« + l   "-•■"•"    i2n + l   '"'-''■' 
(3.171) 

or 
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( 
n^-\ „„_!„„ n      n-l,n,m _    I       "       yn+l,n,m 
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(3.172) 

For the direct magnetic-to-magnetic field (M-)-M) translation, we have the following: 

s:;,M^M,=K:::: o.m) 

For the indirect magnetic-to-electric field (M-^E) translation, we have 

T""' - -7 /ZHil7«.".'" (3 174) 

or 

Finally, for the indirect electric-to-magnetic field (E^M) translation, we have 

Due to the symmetry of our addition theorems, Eq. 3.171, 3.172, and 3.173 are equivalent. Eqs. 

3.174, 3.175, and 3.176 are also equal to each other. Again, these equivalencies will allow us to construct 

recursion relafions for the vector addition theorem if found useful (e.g., more computationally efficient). 

3.4 (d) Translation of Vector Fields using Potentials 

Since the electromagnefic and elastic wave fields can be derived fi-om potentials, these vector 

fields can also be translated via their potentials. To do this we first express the (vector fields + amplitude 

coefficients) as (potential fields + amplitude coefficients). The potential fields are then translated into the 

new coordinate system. Equating the translated outgoing potential fields with the incoming potential fields 

allows the addition theorem relationships to be derived for the amplitude coefficients. The potential 

method for translating the vector fields is better than the vector method for one reason: computation of the 

scalar addition theorem for the longitudinal waves is more efficient than computation using the vector 

addition theorem. 
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We first start with the longitudinal field U. Recall that the vector fields for longitudinal waves can 

be expressed as the gradient of a scalar potential <1>„^ = G^Jl„ (kr^ )F„„ (0„, ^„ ) : 

U    =-VO    =G 
k 

2n + l 
KVK)X:^'(0^,(pJ 

\2n + \ 

(3.177) 

We expand the scalar potential and derive the translated vector field by taking the gradient of the translated 

potential in the p coordinate system. Since the scalar addition theorem is of the form 

v=0 /j=-v 

the outgoing wave field potential is therefore expressed as 

Summing over n and m yields the total outgoing wave field potential: 

(3.178) 

(3.179) 

CO rt CO V 

The incoming wave field potential for the (3 particle is of the following form: 

(3.180) 

(3.181) 

Each A^   coefficient will have n,m sub-coefficients ( A"^ ) contributed fi-om the scattered field of the 

transmitting sphere a: 

«=0 m=-n 

Finally, we sum over v and \x to get the total incoming wave field potential: 

(3.182) 

CO       n       CO       V 

n=Om=-n v=0//=-v 

(3.183) 
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Equating O" and (t>^ at the surface of sphere P yields the following translation equation for the 

wave field coefficients: 

00        rt oo V CO      n      00      I' 

SIZ 2:G..z;;j;(fe,,)r,,(e„»>,) = E E E Z<"7;(fc'.)''.(«..«'.)    <'•'"" 
«=0 m=-n v=0 f,=-v "=» "=-" ''=0 /'="'' 

From inspection the A"^ sub-coefficients can be solved for: 

Summing the ^"^ sub-coefficients over n and m yields the A^^ coefficients: 

n=0 m=-n 

(3.185) 

(3.186) 

The coefficients for the electric and magnetic multipole fields can be translated in a similar 

manner. Recall that the vector fields for the electric (SE) and magnetic (SM) waves can be expressed 

00        +71 

respectively as the curl and curl-curl of a vector potential ^ = 2J Xi ^« (MT^nm (^' V) '■ 
«=0 m=-n 

k 

\n + \ 
hj:\(K)x::\Oa><Pa) 

\2n + l 

(3.187) 

(3.188) 

We now use the vector addition theorem.  Note, however, the vector potential has only one vector 

spherical harmonic with / = n, therefore simpKfying the expansions. The outgoing wave field potentials are 

00      V + 1      +V 

^L=H„j!!\K)X.(Oa,<p.)=^«.ZSI.z:::::(R„,)Mka,)Y^A0,>'p,)  om 
v=OX=v-\fi=-v 

00    v + 1     +v 

v=0 A=i*l//=-!' 

Again we sum over n and m to produce the total outgoing wave field potential: 
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^'=E E^«.Z S E2;:::"(R«/,)A(^«.)Yi(^.'9',)       (3191) 
71=0 m=-n v=0 X=v-\ fi=-v 

00      n 00    w+1     +v 

n=Om=-n       v-0 X=v-1 ti=-v 

Note that Eqs. 3.189-3.192 have X = v+1, i^ = v, and A, = v-1 expansion coefficients. The ?i = v 

coefficients represent direct translations of the electric and magnetic fields. That is, the electric potential 

translates to an electric potential (electric->electric), and the magnetic potential translates to a magnetic 

potential (magnetic-^magnetic). The X = v+1 and A, = v-1 coefficients represent indirect or "conversion" 

translations, where the electric field translates to a magnetic field (electric-^magnetic), and the magnetic 

field translates to an electric field (magnetic-^electric). This comes about due to the form of the vector 

field solutions when the curl (or curl-curl) is taken of the Yy/^' and Y^/' vector spherical harmonic 

terms. 

The X = v condition results in incoming wave field potentials of the form 

Yf.=C,,A(^^)Y;(^^,^,) (3-194) 

Since these vector potentials are of the same form as the original, untranslated vector potentials, they will 

produce the analogous fields (electric -^ electric and magnetic -» magnetic) when the curl and curl-curl 

operations are performed on them. The addition theorem translation coefficient is simplified in this case to 

Z"'"'^(R„^). As in the longitudinal wave field case, we split the B^^ and C^^ coefficients into B"^ 

and C"" sub-coefficients for the incoming wave field potential: 

^^=E E5;;A(^,)Y;(^,,^,) (3.195) 
n-Om=-n 

n=Om=-n 

Finally, we sum over v and |j, to arrive at the total incoming wave field potential: 
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CO « 00 V 

^' = E Z Z i:KUkr,)Y:,i0,,cp,) (3-197) 
n~Om=~nv=0 ^=-v 

00      n      00      V 

^"^ = Z Z Z i:c:;ukr,)Y:/e^,<p,) (3.198) 
«=0 m=-n v=0 fi=-v 

We now equate the outgoing wave field potentials (from sphere a) to the incoming wave field 

potentials (to sphere P) at the surface of sphere p to arrive at the following translation equations for the 

wave field coefficients: 

nnm _ TT    yn,n,m n ^QQ'\   ■ C"'" =1    7"'"'"' (3.200) 

This result is equivalent to the direct translation result in Eq. 3.173. As used before, the (E->E) and 

(M-^M) subscripts denote that these sub-coefficients come from a direct translation of the vector potential. 

Again, summing over « and m yields the B^,^ and C^^ coefficients: 

00      n 

B.,,s^E) = Z Z^;%-^)       (3.201) Q,(^^^) = X ZQM.M)    (3-202) 
n=Om=-n n=0 m=-n 

There will also be sub-coefficients that will come from a conversion translation of the vector 

potential, denoted with (E-^M) and (M^E) subscripts. The X = v-1 and X = v+1 conditions result in 

incoming wave field potentials of the form 

^".(.-1) = B,,,,_,,U,(kr,)Y:;\0,,<p,) (3.203) 

n(v.i) = B,^,^,,,U,(kr^)Y:;\0,,<P,) (3.204) 

nc.-.) = C,,i.-r,U(^p)XM,g>,) (3.205) 

^(..1) = Q,(..,7;.>(^,)Y.7'(^,,^,) (3.206) 

Since these vector potentials are different from the original, unfranslated vector potentials, they will 

produce different fields (electric-^magnetic and magnetic^electric) when the curl and curl-curl operations 

are performed on them, respectively. For the v-1 component we get 



64 

V + 1 

2v + l 

(3.207) 

(3.208) 

Note that the curl of the v-1 component yields a multipole field of the magnetic form, whereas the curl-curl 

of the v-1 component yields a multipole field of the electric form. 

For the v+1 component we get 

1^       .       .,      x,.V+l,^ .        .   /      V 
^'^xUr(kr,)Y:;'(0,,<P,) = i^ 2v + l 

Ukr^)Y:,(0^,(Pp) (3.209) 

1 Vx[wxj\^,(kr^)Y:;(0,,<p,)] = 

2v + l 
j^;;. (kr,) Y;-' (0, ,cp,)- ^1^7;.. (^,) Y;" (^,, <Pp) 

(3.210) 

Similar to the v-1 component, the curl of the v+1 component again yields a multipole field of the magnetic 

form, whereas the curl-curl of the v+1 component again yields a multipole field of the electric form. 

We now look at the individual potentials. The incoming magnetic wave field evolves from the 

outgoing electric potential (E-»M): 

1„     „,E -Vx^ (E-^M) 

t tH..t t\^-^:z. -^A^•c"::J-7=>.(H)Y;(^,=^.) 
(3.211) 

n=0 m=-n v=0 fi=-v 

We now define a new magnetic field sub-coefficient C^^f^^^,^^ 

^|2v + \ 

I 
[V^-2:;;T;.,-AA^-^::": v.f 

(3.212) 

Similarly, the incoming electric field evolves from the outgoing magnetic potential (M^E): 
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7!rvx[vx*r«.<,]=2:1:^.-1: tl^-^s-.-^^^-^xJ 
n=0 m^-n        v=0 fi=-v 

V2v + 1 

v + 1 
2v ̂ A-i (^«,) Y;-' (^.' <^^) -' V ^^'-^ (^^^ ^^^^'' ^^^' ^^ ^ 

(3.213) 

The new electric field sub-coefficient B""^i^_^j;) is similar to the magnetic field sub-coefficient: 

I nnm _ j   [V^-%:..-V^^-2::T;.. (3.214) 

To summarize our electric and magnetic field sub-coefficients, we have: 

(3.215) nnm _  TT     yn,n,m y-^nm    T     iyn,n,m 

R"" -1 ^       L/v   y"."."   _ Jv-i-1 • 7"'"'' 
»'>/' 

(3.216) 

(3.217) 

Again, we put them into the traditional S and Ttranslation coefficient notation of Eqs. 3.53, 3.54: 

Vfl    ~       V,V,fl 

(3.218) 

[^■K:"C,,-^f^^-K-"{;2 

(3.219) 

(3.220) 

3.5 Multiple Scattering Computations 

The single sphere scattering solutions (Section 3.3) and translation addition theorems (Section 3.4) 

provide the algorithmic core of the VMIST program. However, to simulate the multiple scattering in toto 

for a particle ensemble and calculate the macroscopic field properties (amplitude and direction as a function 

of position and fi-equency), the computations must be performed in a specific sequence of steps. The 

sequence of steps in the VMIST computation are the following, and are also displayed as a flow diagram in 

Figure 3-7: 
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1. Input maximum multipole order nmax to compute, maximum number of iterations imax to compute if 

program does not converge, and content of initial plane wave (only for elastic waves; ratio of 

longitudinal to shear component). 

2. Set up frequency loop to scan frequency range for frequency-domain computations, or image grid for 

spatial-domain computations. 

3. Irradiate all of the particles in the ensemble with polarized, phase-corrected plane waves propagating in 

z-direction. 

4. Calculate the scattered wave fields for each particle due to the plane waves (first-order scattering) 

using the single sphere scattering algorithm. 

5. Compute the translation coefficients for all possible particle pairs in the ensemble using the translation 

addition theorem algorithms. 

6. Start iterations—Translate the scattered waves for all particles and sum the translated fields incident on 

each particle. 

7. Calculate the scattered wave fields for each sphere due to the translated waves (second and higher- 

order scattering) using the single sphere scattering algorithm. 

8. Compare new scattered wave field coefficients (new iterated values) with old (previous iterated values) 

for convergence. 

9. If wave field coefficients have not converged to the user-specified criteria, loop back to step 6 and 

continue computation. 

10. If wavefield coefficients have converged to the user-specified criteria, convert wavefields to cartesian 

coordinates and evaluate fields at evaluation or grid point. 

11. Loop back to step 2 for frequency-domain computations, step 10 for spatial domain computations. 

12. Output mdividual wavefield amplitudes— longitudinal, electric (SE), and magnetic (SM)—for the 

specified point (frequency domain) or image grid (spatial domain). 



67 

1*1; Input nmax, max, and plane wave type 

I 
52. Start freqjuency loop or build image igrld? ^ 

I 
';3-4, Illuminate spheres with plane wave 

and calculate scattered waves 

I 
,5. Calculate translation coefficients 

T 
6. Iterate: Translate scattered 

^-waves and sum new incident waves 
■^ ^ 

^^ 
; 7. Calculate scattered waves from spheres 

^r 
8-9. Compare coefficients for convergence. 

If no convergence, continue iterations 

i 
] 10. Calculate field components at grid point 

I 
11. Lobpb^dkifb^rt 
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Decision or loop process (main program) 

Calculation process (subroutines) 

FIGURE 3-7. Flow diagram of computation steps paformed in the VMIST algorithm. 
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The plane wave, scattered wave, and addition theorem expansions are computed to a maximum 

multipole order n„ax specified by the user. The value n„ax truncates these normally infinite expansions, and 

thereby introduces error into the models. Selection of appropriate «„^ values for the calculations is 

therefore critical since the selection will always be a compromise between computation time and accuracy. 

Although higher n„ax values provide greater accuracy, they do so at the price of increasing the computation 

time in an exponential manner. Because of the importance of «„„;, in the simulations, this parameter was 

examined in detail with respect to convergence, accuracy, and total computation time for the models. 

The plane wave expansion for the elastic longitudinal wave can be derived from the plane wave 

expansion of the scalar potential given by Stratton and Jackson.^-"' The coefficients used in the VMIST 

code for constructing a longitudinal plane wave propagating in the z-direction were the following: 

ey*^=£rV4;r(2« + l)U„_o (3-221) 

Various plane wave expansions have been presented for vector wave fields, and although they are 

similar in form they do not agree as far as the correct combination of coefficients and vector fields. ■ ' 

Trial-and-error was therefore used with the VMIST code to construct plane wave expansions that produced 

an electric (shear-electric) field polarized in the x-direction, and a magnetic (shear-magnetic) field 

polarized in the y-direction. Subsequently, it was found that the trial-and-error results for the longitudinal 

plane wave expansion was in agreement with Stratton. The trial-and-error expansions for the electric and 

magnetic multipole fields were in partial agreement with Stratton and Jackson, but differed from the forms 

given by Greiner and Maruhn.^''"'''^ 

The fmal form of the plane wave expansion for electromagnetic waves propagating in the z- 

direction was the following: 

e/'' = ;^/"V4;r(2« + l)K,, + V„,,, - W„_., - V„._J (3.222) 
n 

^,e^^=(-05]/"VM2« + l)K,, +V„,„ -f W„._, +V„._J (3.223) 
n 

The fmal form of the plane wave expansion for shear elastic waves propagating in the z-direcfion was the 

following: 
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e^e"- = 2/"V4;r(2« + l)[v„.,, - V„._,] (3.224) 
« 

e/"- = H)I:/''V4<2« + 1)[W,,, - W„,_,] (3.225) 
n 

The plane wave expansions describe waves with a fixed phase with regards to the z = 0 plane. 

Using the plane wave expansions as incident coefficients for each particle is therefore problematic, since 

the incident coefficients are in terms of the particle's local coordinate system, but their global position with 

respect to the z-axis determines what the plane wave phase is when it hits the particle. In other words, 

using the plane wave coefficients as is for the incident coefficients effectively puts all of the particles on 

the z = 0 plane for the initial scattering event. This is not a correct way to model multiple scattering since 

we have to be concerned with phase mteractions and interference effects. Although the phases are 

automatically taken care of in the translation of the spherical wave fields, they have to be accounted for in 

the initial plane wave. This is readily accomplished by multiplying the expansion coefficients by a phase 

factor oie"''^^"\ where R{z) is the distance of the particle from the z = 0 plane (i.e., its global z coordinate). 

After VMIST computes the initial scattering of the plane waves by the particles, the program then 

computes the translational expansion coefficients all possible particle pairs. Since the coefficients are a 

function of the wave vector k in the spherical Bessel functions, they have to be recomputed for each 

frequency step in a frequency-domain computation. This makes the frequency domain computations much 

more time-consuming than the spatial domain computations, where the frequency is fixed but the fields are 

evaluated at several points in an image grid. 

Once the translation coefficients are computed the iterations begin (Figure 3-8). During an 

iteration step, the outgoing scattered wavefields from each particle are translated into incident wavefields 

for all of the other particles. For a particle ensemble of A^ particles, there will be 2(A'-1) or 3(A'^-1) 

(electromagnetic or elastic fields, respectively) new incident wave field coefficients for each particle. 

These new incident coefficients are summed and added to the old coefficients. Each /-th iteration 

represents an /+! multiple scattering order (first-order scattering being the initial plane wave scattering), 

and each new confribution to the field coefficients gets smaller and smaller until the field coefficients for 

all of the particles converge to a stable value. 
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FIGURE 3-8. Illustration showing how each particle interacts with (N-\) particles in an iV-particle 
dispersion, resulting in NiN-l) total interactions. The mteractions are iterated through all of the particles, 
firsat A, then B, etc.—vtntil all mteractions have been accounted for. The iterations then continue with A 
again, B, etc. until the scattered field amplitudes from all particles converge. 

Convergence is measured by comparing the sum total of all of the field coefficients 

between two successive iteration steps. If the relative difference between the the two coefficient sums is 

less than the specified convergence criteria (for example, a change of less than 10'^), then the iteration 

procedure stops. The coefficients are then used to compute the fields at an evaluafion point. The fields for 

each particle are converted into cartesian coordinates and evaluated at the evaluation point using the 

position vector between the particle and the point. The fields for all of the particles are summed at the 

evaluation point to yield the total vector field strength. The longitudinal, shear-electric (electric), and 

shear-magnetic (magnetic) fields are kept separate, however, to ascertain the contribution of each to the 

total field at that point. 

If a frequency-domain analysis (spectrum) is desu-ed, only a single evaluation is used, but the the 

entire computation—from initial plane wave to fmal evaluation of converged coefficients—must be 

repeated for each frequency step. As previously mentioned, this is a rather time-consuming process. If a 

spatial-domain analyis (image) is desired, then a planar grid of evaluation points are used. The fields are 

evaluated at each of the grid points to construct an image of the wavefield amplitudes and directions on the 
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image plane. The cartesian expansions of the UVW multipole fields are rather long and therefore not 

presented here. 

The VMIST algorithms were written, debugged, and compiled in Fortran 90. The translational 

addition theorem tests and VMIST simulations were performed on a personal desktop computer with 256 

MB RAM and an AMD Athalon XP 2000+ processor running at 1.679 GHz. 
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CHAPTER4 

RESULTS: TRANSLATIONAL ADDITION THEOREMS 

4.1 Mathematical Review and Comparisons 

Convergence tests were performed for the vector addition theorem derived in Section 3.4 (a) and 

the scalar addition theorem presented in Section 3.4 (b) For review, the vector addition theorem derived for 

pure-orbital vector spherical harmonics using an integral transform method is the following: 

00      V + l      +V 

^\KKse.,cp^) = 2 £ Izl-;(R„,)A(H)Y4(^,,^,) (4.1) 

where 

p=|/-;i| » z,t -r 1 

1 

^ ^X,0,p,0 / . ^l.m-rA.r^X.u-r.U^X.u-T.P.m-u 

r=-I 

(4.2) 

This theorem will henceforth be called the pure-orbital addition theorem, since it is formulated for 

the translation of vector multipoles containing pure-orbital vector spherical harmonics. Using the "direct" 

and "indirect" translation coefficient notation of S"^ and T"^ respectively, we have 

an"!   yn,n,m /A ON 

Vfl v,v,fi ^   "   ' 

c=^z^[^-K':c.. -^/^^•c"■;.J (4-4) ■\2v +1 

Eqs. 4.2-4.4 comprise the set of pure-orbital addition theorems for translating vector spherical wave 

fiinctions from one coordinate system to another. 

The scalar addition theorem, adapted from Varshalovich et al., is the following: 

h^\K)UO„,<p„) = t tz:-;Uka,)Y,,ie,,<Pp) (4.5) 

where 
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K-:=^t^'-'->'f(kR,,)r,„(@,,.^^),p^^c:i 

(4.4) 

Testing of the pure-orbital addition theorems was necessary to evaluate their convergence (how 

fast do they converge?) and correctness (do they converge to the actual translated field values?). Also, 

since alternate expressions for the addition theorems have been published, a comparison between the pure- 

orbital theorems derived m this work and those derived by others would be a useful and interesting 

exercise. Such a comparison has not been previously reported in the open literature despite the variety of 

expressions that have been put forward for the addition theorems. 

Two sets of scalar and vector addition theorems were selected for comparison. The first set were 

by Cruzan." Cruzan's theorems are essentially the "gold standard" for addition theorems due to the 

number of times they have been cited and used. Many recursion formulas have also been derived to more 

efficiently compute Cruzans's addition theorems.*'"*'*'" 

The Cruzan vector addition theorems are also significantly mathematically different fi-om those 

derived in this work. For a fairer comparison and easier programming, the Cruzan theorems were adjusted 

by converting Wigner 3j coefficients to Clebsch-Gordan coefficients, converting Legendre polynomials and 

trigonometric fimctions to spherical harmonic notation, and normalizing to convert fi'om N and M spherical 

wave functions to V and W spherical wave functions. After these changes, the Cruzan vector addition 

theorems are still mathematically distinct from this work's theorems; 

5;;(Ra,)=V4^S 

^p(kK^)Yp,^-,(®afi,^.p)QLoc:: li,P,m-ft 

xa(n,v,p) 
(v)(v + l)(2p + l) (4.7) 

T:;(K,)=^1: 

(«)(« +l)(2v + l)(2/7 + l) 

^p V^^ap )Yp,m-fi \®aJ3' ^a/? )^v',0,p-l0^v',fi,p,m-fi 

xb(n,v,p) 
f     (v)(v + l)(2p + l) 
\n)(n + V)(2v + l)(2n + l) 

(4.8) 

where 
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a(n,v,p) = i _ -v+p-n 1 

2v(v + l) 

2v(v + l)(2v + l) 

+ (v +1)(« -V + P + l)(n + v-p) 

-v(v -n + p +1)(« + V + P + 2) 

(4.9) 

b(n,v,p) = i 
..p-n   (2V + 1) (« + V + ;? + l)(v - « + JP) 

1/2 

(4.10) 
2v(v + l) 

After the required conversions, the Cruzan scalar addition theorem is the same as Eq. 4.4. A 

minor difference is that Cruzan's coordinate system is inverted, with the displacement vector Rap pointing 

in the opposite direction (from sphere a to sphere p, instead from sphere (3 to sphere a as in this work). 

This only leads to a change in the sign of/7 in the exponent of the factor / "'''" in Eq. 4.4, and similarly 

for the /"■'''"" factor in Eqs. 4.9 and 4.10. 

The second set of addition theorems were from Liu et al.^^ Their theorems were selected for the 

following reasons: 

1. Liu et al. is a recent publication, and therefore should reflect the latest and most accurate 

information. 

2. Since Liu et al. apply the addition theorems to elastic wave scattering, they present both scalar and 

vector addition theorems. Most other papers present only the scalar theorem for acoustic 

(longitudinal wave only) scattering, or only the vector theorems for electromagnetic scattering. 

3. The theorems presented by Liu et al are close in form to the pure-orbital addition theorems, with 

Clebsch-Gordan coefficients and spherical harmonic notation. However, they still differ in 

content from this work's theorems. 

Liu et al use vector wave fiinctions J„„;, J„„2, and J„„5 which are close in form to the L, M, and N 

wave functions, and therefore related to the U, V, and W vector multipole fields, except for a factor of-/ 

for the transverse functions: 



J„«,(r) = jv[z„(^)7„,(^,^)] 
k 

.1L   (_i)"p«±iI^^ = U„„(r) 
k y   4;r   {n + my. 

v«(«+i) 
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(4.11) 

'      ^M,.(-l)-j^^^=-.^..(r) 
(4.12) 

^^^(^TTl)     "" "V   4;r   (n + m)! 

J„.3 (r) = ,    ,|     ,V X V X [rz„ (^)7„„ {e, cp)] 
kg ^Jn{n +1) 

(4.13) 

.^/;i(;rn) "'"     ^| ^n («+m)! 

Liu et al. call their addition theorems structure constants, and denote them with capital G's. The 

Liu et al. scalar addition theorem is 

p 

Again, inversion of the coordmate system leads to a change in the sign ofp in the factor f*'' ". However, 

Eq. 4.14 differs from Eq. 4.4 by the absence of the factor 

(2.H.1X2;, + 1)     „ (^^,^, 

,       (2n + l)       ''■"■'■" 

which is a significant departure from our scalar addition theorem. 

The vector addition theorems in Liu et al. were originally presented by Wang et al.^^ Their 

"direct" translation coefficient or structure factor is 

1 

2^ ^ n,m-T ,\,t    V .f-r Xt^v ,n-T ,p,. 
r=-\ 

Their "indirect" franslation coefficient or structure factor is 

' (4.16) 

m-ii 
x=-\ 
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' ^ P (4.17) 
1 

r=-l 

As with the Crazan addition theorems, the Liu et al. structure constants also differ by a sign 

change mp for the factor f^'''", again attributable to a coordmate mversion. However, the differences 

between the Liu et al. structure constants and the pure-orbital vector addition theorems are significant: 

1     A factor of A- -^-^  x CI'Q   „ in the pure-orbital addition theorems is absent from 
V 2/ +1 

Liu et al. 's structure constants. 

2. Liu et al's "indirect" structure constant only has a A = v-1 expansion term, whereas the "indirect" 

pure-orbital translation coefficient of Eq. 4.6 has both X= v-1 mAX=v+l expansion terms. 

3. Liu et a/.'s "indirect" structure constant also differs from the X = v-1 term of the "indirect" pure- 

(2X + \\ 
orbital translation coefficient by a factor of 

2l + \ 

Although the published addition theorems differ from the pure-orbital addition theorems in 

analytic form, do they differ numerically when put to the test? The following sections desribe how the 

comparison tests were performed and the results. 

4.2 Numerical Test Methods 

The numerical tests were performed by creating a longitudinal (U) field, electric (V) field, and 

magnetic (W) field each with a («=2, m=l) quadrupole moment. The fields were translated from the origin 

(sphere a) to an evaluation point on the surface of a test sphere (sphere p) using the addition theorems and 

translation coefficients for the fields. The radius, distance, and angular orientation of the test sphere with 

respect to the origin were varied in the tests, as was the position of the evaluation point. These variations 

were incorporated to determine the convergence and accuracy of the addition theorems for a variety of 
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geometries. Five surface position-radius-distance-orientation variations were tested, and are summarized in 

Table 4-1. A radius for sphere a (the origin of the translated fields) did not have to be specified since it 

does not contribute to the translation coefficient computations. 

The position of sphere p and of the evaluation point on sphere P's surface were varied to cover 

different quadrants with respect to the origin and sphere P's coordinate system respectively. The positions 

by quadrant are listed in Table 4-2. Table 4-3 shows how each of the parameters in Table 4-1 were varied 

to provide an unbiased sampling of the performance of the addition theorems. Figure 4-1 displays the 

relative distances of sphere p and the positions of the evaluation points per test (angular orientation is not 

shown). 

TABLE 4-1. Parameters for five test conditions for the addition theorem comparison tests with sphere P as 
the test sphere. 

j'test 

H 

i 
1 ■ 

Sphere P 
•distance Rap 

Sphere p 
radius rg 

R«p/rB Sphere p position 
(angular orientation with 
respect to origin) 

Evaluation point position 
with respect to sphere p 
coordinates 

0.8 ^aS ep    ■:■■ CPB 

1 3.4 cm 0.5 cm 6.8 37° 53° 151° 233° 

2 1.4 0.5 2.8 146 115 163 320 

3 3.4 0.1 34 71 304 44 9 

4 14.0 0.5 28 146 115 163 320 

5 3.4 1.0 3.4 71 304 44 9 

TABLE 4-2. Position of sphere p and evaluation point by quadrant. 

|Test   ,■' Quadrant position of sphere p with respect to 
origin 

Quadrant position of evaluation point with 
respect to Sphere P        •          , 

1 +x, +y, +z quadrant -x, -y, -z quadrant 
2 -X, +y, -z quadrant +x, -y, -z 
3 +x, -y, +z quadrant +x, +y, +z 
4 -X, +y, -z quadrant +x, -y, -z 
5 +x, -y, +z quadrant +x, +y, +z 

TABLE 4-3. Varied parameters by test. 

t;Test   ■ Distance R„B varied Radius rp varied ©nR,4>„a varied. ,0fi.' tPB varied 
1 
2 x 0.412 from test 1 same as 1 yes yes 

3 same as 1 x 0.200 from test 1 yes yes 

4 x 10 from test 2 same as 1 same as 2 same as 2 

5 same as 1 x 10 from test 3 same as 3 same as 3 
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r = 0.5 cm 

Testa 

\ J F^^=3.4cm 
=^ 

r„= 0.1 cm 

Test 4 (2/5-scale) 

f^jS = 14.0 cm 
^ 

r = 0.5 cm 

Tests 

V 

FIGURE 4-1. Distances and radii of sphere (5 (solid circle) from sphere a (dashed circle), and the relative 
positions of evaluation points on sphere P's surface (small filled diamonds) for each addition theorem 
comparison test. 
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The fields were translated out to the evaluation points using the pure-orbital, Cruzan, and Liu et al. 

addition theorems as discussed in the previous section."'^' The maximum mulipole order, «„„, that the 

expansions were computed to was also continuously varied from «„„ = 2 to «„« = 16. There were 

therefore 15 simulations ran for each of the three addition theorem versions and for each of the five test 

positions as descibed in Table 4-1. 

The cartesian components of the fields were evaluated directly at the point on the sphere where 

they were translated, fu-st for the direct, untranslated (2,1) quadrupole field emanating from the origin, 

second from the fields translated to sphere P's surface. This allowed du-ect comparison of the translated 

fields with the untranslated fields as a function of fi-equency and field component (x, y, or z of the 

longitudinal, electric, or magnetic fields). The deviation of the translated fields fi-om the untranslated fields 

was quantified by calculating the difference between the magnitudes of the fields (by summing the squares 

of the cartesian components and taking the square root) and by averaging over the fi-equency band. The 

results were then plotted as convergence curves as a function oin^ax- 

The comparison tests were performed in the fi-equency domain. The range of parameters and how 

they translate to elastic and electromagnetic wavelengths for the comparison tests are listed in Table 4-4. 

The longitudinal and shear wavespeeds were based on solid ice as the matrix, smce ice has elastic wave 

properties intermediate between those of a "soft" solid such as plastic and a "hard" solid such as steel.'^' 

The corresponding electromagnetic fi-equency range is based on the shear elastic wavelength, since the 

shear multipole fields correspond to the electromagnetic multipole fields. 

TABLE 4-4. Range of fi-equency-dependent parameters for the addition theorem comparison tests. 

Parameter 

fi-equency 
wavelength, longitudinal 
wavelength, shear 
k, longitudinal 
k, shear 
kr (r = 0.5), longitudinal 
kr (r = 0.5), shear 
equivalent EM wavelengths 

Start 

10 kHz 
39.8 cm 
19.9 cm 
0.15787 cm- T- 

0.31574 cm' 
0.0789 
0.158 
20 cm (1.5 GHz) 

End- 

IMHz 
0.398 cm 
0.199 cm 
15.787 cm' T" 

31.574 cm- 
7.89 
15.8 
0.20 cm (150 GHz) 
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Computation time was also measured for each of the theorems and as a function of «„„ and test 

geometries. The next section discusses the convergence resuhs from the comparsion tests. 

4.3 Numerical Test Results 

4.3 (a) Convergence Results 

Convergence of the addition theorems was quantified by calculating the magnitude of the 

difference vector between each of the untranslated U, V, and W multipole fields and the corresponding 

translated fields (Figure 4-2). By using the magnitude of the difference vector, instead of the difference 

between the two vector magnitudes, the comparisons can account for variations in angle as well as 

magnitude between the translated and untranslated fields. The difference vector magnitudes were then 

averaged over the frequency range and plotted as a function of «„„. 

Untranslated Multipole Field 

^untranslated 

Z 

Difference 
Angle 

Difference Vector 

Fdiff —  ^translated" ^imfranslated 

Translated Multipole Field 

F translated 
 y 

Evaluation 
Point 

X 

FIGURE 4-2. Diagram of difference vector between untranslated and franslated field component F 
(representative of either U, V, or W). The magnitude of this vector was used to quantify the convergence 
and accuracy of the addition theorem results. 



81 

One of the first results to be noted was that the theorems by Cruzan produced numerically 

identical results to the pure-orbital theorems. The only difference between the two sets of theorems was the 

time required to compute the results. Table 4-5 displays the time required to compute the translated fields 

for«„ 16. 

TABLE 4-5. Computation time in hours to translate the UVW multipolde fields for each test 
configuration. 

■ Test Addition Theorems 
Pure-Orbital Cruzan Liu et al. 

1 11.09 6.85 12% 

2 10.06 6.15 6.55 

3 10.93 6.79 7.28 

4 16.95 11.09 11.60 

5 11.03 6.80 7.29 

As can be seen from the Table 4-5, the theorems of Cruzan were fastest, with the theorems of Liu 

et al. second, and the pure-orbital theorems the slowest. These results can be attributed to the fact that both 

the theorems of Cruzan and Liu et al. have fewer Clebsch-Gordan coefficients in the expressions. The 

computation of the Clebsch-Gordan coefficients are most likely less computationally efficient, and 

therefore take longer. The theorems of Cruzan substitute algebraic expressions for some of the Clebsch- 

Gordan coefficients, whereas Liu et al just leave them out of the equations with no apparent substitution. 

The algebraic expressions of Cruzan are faster than calculating the equivalent Clebsch-Gordan coefficients. 

However, although the omission of Clebsch-Gordan terms in the expressions of Liu et al also increase 

computational speed, it is difficult to imagine how then- theorems and the pure-orbital (or Cruzan's) 

theorems can demonstrate the same accuracy. 

Another observation from Table 4-5 is that the computation time is directly related to R„p, the 

distance between sphere p and sphere a. The only fiinction in the addition theorems which contains R^p 

explicitly is the spherical Hankel function h^^ {kR^p ) . Therefore, it appears that calculation of the 

spherical Hankel function is a major contributor to the computation efficiency in addition to the Clebsch- 

Gordan coefficients. 
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The computation time for the addition theorems as a fimction of W;^ assmnes a power-law form. 

Modeling the power law as 

Time = c-in^f (419) 

the constant c and exponent r can be determined from the data using least squares fitting. Table 4-6 shows 

the results of this fitting, and Figure 4-3 displays this power-law behavior. The power-law results indicate 

that, for each test, all thiee theorems scale to «„axby approximately the same power-law exponent. 

However, the linear constant can vary by as much as 2x between the theorems. So, although the theorems 

differ in computational speed, ihey differ linearly with n„^ and not exponentially. 

TABLE 4-6. Results of least-squares fit to computation time vs. rt^. 

p:   Test  ■ Constant c(xlO-*) Exponent A 

Pure-Orbital Cru2an Liu et al. Pure-Oibital Cruzan Liu et al. 

1 1.28 0.631 0.713 5.76 5.84 5.82 

2 0.537 0.228 0.288 6.04 6.17 6.11 

3 1.42 0.625 0.735 5.72 5.84 5.81 

4 10.4 7.76 6.71 5.16 5.11 5.18 

5 0.822 0.609 0.695 5.92 5.85 5.83 

■- \ 1—      1 

•     Test 1 Data              f 
§ 10.00 -   Power-Law Fit          / 
o / 
£- .    0=1.28x10-6                   / 
d) 
E K = 5.76                          J 
H   6.00 
c Data from pure-orbital    f 

"CO 
addition theorems       / 

■3 
E   2.00 

O • • • • •-•"•"^'^ 
1       1 1  

10 

n, 
15 

max 

FIGURE 4-3. Power-law behavior of computational time ^s a fimction of n»,ax- 
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Figures 4-4 to 4-9 display the convergence results for the theorems of Cruzan (and therefore the pure- 

orbital theorems as well) and Liu et al. Due to the wide range of error (magnitude of difference vector), the 

vertical scale for each of the plots is logarithmic. 

n max 

-•— Test 1, Cfuzan 
-o— Test 1, Liu etal. 
-*— Test 3, Cruzan 
-a— Tests, Liu etal. 
-f— Test 5, Cruzan 
-^?— Tests, LiuetaL 

FIGURE 4-4. Convergence of longitudinal multipole field U for Tests 1,3, and 5 for the Cruzan/pure- 
oibital and Liu et at. theorems. 
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g   1.00 
UJ 

0.10 

 ^ 1 1  

0-0<><K><><K><><><>0-0-0-0 

Longitudinal Multipole Field U 

10 15 

n, max 

-•— Test 2, Cruzan 
o— Test2, Liu etal. 
-»— Test 4, Cruzan 
-o— Test4, Liu etal. 

FIGURE 4-5. Convergence of longitudinal multipole field U for Tests 2 and 4 for the Cruzan/pure-oibital 
and Liu et al. theorems. 
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Test 1, Cruzan 
Test 1, Liu etal. 
Test 3, Cruzan 
Test 3, Liu et al. 
Test 5, Cruzan 
Tests, Liu etal. 

FIGURE 4-6. Convergence of electric muWpole field V for Tests 1,3, and 5 for the Cruzan^ure-orbital 
and Liu et al. theorems. 
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FIGURE 4-7. Convergence of electric multipole field V for Tests 2 and 4 for the Cru2an^ure-orbital and 
Liu e^ a/, theorems. 
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10.00 

LJJ 

1.00 

Magnetic Multipole Field W 
-•— Test 1, Cruzan 
-o— Testi, Liu etal. 
-■— Test 3, Cruzan 
-D— Test3, Liu etal. 
-V— Test 5, Cmzan 
-^?— Tests, Liu etal. 

n, max 

FIGURE 4-8. Convergence of magnetic multipole field W for Tests 1,3, and 5 for the Cni2an/pure-orbital 
and Liu et al theorems. 
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Test 2, Coizan 
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FIGURE 4-9. Convergence of magnetic multipole field W for Tests 2 and 4 for the Cruzan/pure-orbital 
and Liu et al theorems. 

As can be seen fi'om Figures 4-4 to 4-9, the theorems of Liu et al. either diverge or show no 

change in convergence. The errors (difference vector magnitudes) are also consistently higher for the Liu 

et al. theorems, often by an order of magnitude or more. 
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The Cruzan/pure-orbital theorems show convergence for about half of the tests. The best 

convergence trends are for the longitudinal multipole field U for Tests 1,2, and 5. The electric (V) and 

magnetic (W) multipole fields display less convergence in their trends. The worst convergence trends are 

seen for the magnetic multipole field W, where only Test 1 shows any convergence behavior. 

Although the Cruzan/pure-orbital theorems show greater convergence over the range of tested 

figurations, it is still disconcerting to note the poor convergence for some of the test geometries and 

Itipole fields. Although the testing was only conducted to «„„ = 16 due to tune and computational 

capabilities, it appears from many of the convergence trends that further testing to higher «„^ would not 

improve the results significantly. The next section will examine the accuracy of the translation operation 

associated with these convergence trends. 

4.3(b) Accuracy Results 

The accuracy of the addition theorems was first qualitatively judged by comparing the fi-equency 

spectra of the untranslated field with the translated fields at various n„ax values. The accuracy was also 

quantitatively assessed as a fiincfion of fi-equency (kd) by using the magnitude of the difference vector as 

described in the previous section. 

Figures 4-10 and 4-11 show the spectra of the y-components of the longitudinal and electric 

multipole fields respectively (Uy and Vy) for Test 1 of the Cruzan/pure-orbital theorems. The magnetic 

multipole field results are similar to those of the electric multipole field, Figure 4-11. The figures show 

fairly good accuracy as far as periodicity and amplitude as a function of fi-equency. Excellent agreement is 

seen at specific fi-equencies as well, such as at kd= 30 for the longitudinal field and kd= 100 for the 

electric field. The x- and z-components of the fields display generally the same periodicity and amplitudes, 

but less precise accuracy. 
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FIGURE 4-10. Spectra of the y-components of the longittidinal multipole field U for Test 1, using the 
Crazan/pure-oibital theorems. 
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FIGURE 4-11. Spectra of the y-components of the electric multipole field V for Test 1, using the 
Cni2an/pure-oibital theorems. 

The results from the other tests are less promising, however. Figures 4-12 and 4-13 display the 

frequency (kd) spectra of the y-components of the longitudinal and electric multipole fields respectively 
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(Uy and Vy) for Test 2 of the Crazan/pure-oibital flieorems. Again, the magnetic muffipole field results are 

similar to those of the electric multipole field. Figure 4-13. The results are still good for the longitudinal 

field, but very poor for both the electric and magnetic fields. Again, specific firequencies show excellent 

aggreement for the longitudinal field, particularly at low fiequency (fe/ < 2) and M = 13. The electric field 

shows agreement between the translated and untranslated field only at low fiequency (fa/ < 1). No 

agreement is observed at any frequency for the magnetic field. The results become even poorer for Tests 3, 

4, and 5. 
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FIGURE 4-12. Spectra of the y-components of the longitudinal multipole field U for Test 2, using the 
Cruzan/pure-oibital theorems. 
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FIGURE 4-13. Spectra of the y-components of the electric multipole field V for Test 2, using the 
Cruzan/pure-oibital theorems. 

The results from the Liu et al theorems do not show any agreement for aity of the fields (U, V, at 

W) or field components (x, y, or z). Figures 4-14 and 4-15 display the fi«quency spectra of the y- 

components of the longitudinal and electric multipole fields respectively (Uy and Vy) for Test 1 of the Liu 

et al. theorems. As with the Cruzan/pure-oibital theorem results, the magnetic multipole field results are 

similar to those of the electric muMpole field, Figure 4-15. The results for the five test geometries show 

that the Liu et al forms of the translational addition theorems are not accurate at any frequency at nmax = 

16. 
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FIGURE 4-14. Spectra of the y-components of flie longitudinal multipole field U for Test 1, using the Liu 
e/fl/. theorems. 
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FIGURE 4-15. Spectra of the y-components of the electric multipole field V for Test 1, using the Liu et al. 
theorems. 

To quantitatively measure the degree of accuracy, the magnitude of the difference vector between 

the untranslated and translated fields (Figure 4-2) was computed as a fimction of fi-equenq^ (kd). In order 

to compare various multipole fields and test geometries, the magnitude of the difference vector needs to be 
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normalized to yield a percent deviation. The most straightforward normalization would be to divide the 

difference vector magnitude with the untranslated vector magnitude at each frequency step. This, however, 

grossly overestimates the deviation at frequencies the untranslated vector magnitude approaches zero. 

Likewise, at frequencies where the untranslated vector magnitude is large the deviation is underestimated. 

To achieve a more even normalization, the difference vector magnitude was divided by the frequency- 

averaged unfranslated vector magnitude for each frequency step. 

The results for the longitudinal and electric multipole fields are displayed in Figures 4-16 and 4- 

17, respectively, for the Cruzan/pure-orbital theorems. Test 1. The deviations for the magnetic multipole 

field are similar to those for the elecfric multipole field in Figure 4-17. The vertical scale on the plot shows 

the magnitude of the difference vector with respect to the frequency-averaged unfranslated field vector, and 

is given in units of percent. 
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FIGURE 4-16. Percent deviation of ttanslated longitudinal multipole field U from unfranslated field, for 
the Cruzan/pure-orbital theorems, Test 1. 
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FIGURE 4-17. Percent deviation of translated electric multipole field V from untranslated field, for the 
Cruzan/pure-orbital theorems, Test 1. 

Note that the magnitude of the difference vector goes to zero for particular frequency bands of the 

longitudinal field, but increases up to 20% for other frequency bands. The bands of zero magnitude 

represent spectral regions where the addition theorem is in very good agreement with the untranslated field. 

The bands of high magnitude represent regions where the addition theorem fails to reproduce the 

untranslated field. 

The magnitude of the difference vector for the electric and magnetic multipole fields never does 

go to zero. The minimum magnitude at «„„, = 16 is approximately 20% for the both multipole fields, and 

ranges up to 500% in the low frequency range. 

The difference vector magnitudes for the other tests show the same type of behavior as for Test 1, 

but with smaller ranges of deviation for the electric and magnetic multipole fields. Figures 4-18 and 4-19 

show the longitudinal and electric multipole field deviations as a function of frequency for Test 2. Note 

that the longitudinal multipole field again displays narrow frequency bands of good agreement (deviation « 

0%) and broader frequency bands of poorer agreement (deviation 5-15%). The electric and magnetic 

multipole fields have overall higher deviations, but within a tighter range across the spectrum. 
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FIGURE 4-18. Percent deviation of translated longitudinal multipole field U from untranslated field, for 
the Cruzan/pure-orbital theorems, Test 2. 
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FIGURE 4-19. Percent deviation of translated electric muUipole field V from untranslated field, for the 
Cruzan/pure-orbital theorems, Test 2. 

As expected, the deviations for the multipole fields from the Liu et al. theorems are extremely 

high. The results for the longitudinal and electric multipole fields are displayed in Figures 4-20 and 4-21, 

respectively, for the Liu et al. theorems. Test 1. 



94 

120 

.2     80 

> 
(U 
Q 

40 

UMultipole Field 

Test1,n^ax=''6 
Liu etal. 

FIGURE 4-20. Percent deviation of translated longitudinal multipole field U from untranslated field, for 
the Liu et al. theorems, Test 1. 
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FIGURE 4-21. Percent deviation of translated electric multipole field V from untranslated field, for the Liu 
e? a/, theorems, Test 1. 

Table 4-7 lists the deviations for each test and multipole field at n^ax = 16 for the Cruzan/pure- 

orbital and Liu et al. theorems. The deviations are also averaged over all five tests. 



95 

TABLE 4-7. Average deviation of translated field from frequency-averaged unfranslated field for each 
multipole field and test. 

:;■■ ■  >-'. Test^   '     -■ U (% dev)' V (% dev) W(%dev) , 

Cruzan/Pure-Orbital Theorems 
1 6.38 54.2 57.3 
2 4.25 68.0 97.5 

3 15.4 101 109 
4 20.5 120 120 
5 10.7 104 113 

i    Averaged over tests ■ir,4 89.4 99.4 
Liu et al. Theorems 

I 179 211 198 
2 972 759 249 
3 280 483 325 
4 147 215 158 
5 408 418 347 

'■'   Averaged over tests 397     ' 417 ■ ■:'■   ,255--. 

The conclusions from Table 4-7 are dismal. Using the Cruzan/pure-orbital scalar addition 

theorem, the translated longitudinal multipole field will deviate on average about 11.4%. The results are 

worse for the vector addition theorem and translation coefficients for the electric and magnetic multipole 

fields. On average, the translated electric and magnetic multipole fields will deviate 90-100%. As bad as 

these results are, the addition theorems from Liu et al. are much worse, with average deviations in the 

franslated fields ranging from 255% to 417%. 

Further analysis of the addition theorem test results indicates that the error in the translated 

multipole fields arises equally from deviations in the amplitude of the vector field and deviations in the 

orientation (difference angle) of the vector field. Deviations in the amplitude can vary up to 400%, while 

deviations in orientation (vector angle) can vary up to a fiiU 180° (for the Cruzan/pure-orbital theorems). 

Interestingly, the franslated longitudinal fields have greater amplitude deviations, while the translated 

elecfric and magnetic fields have greater angular deviations. 

Although numerical testing of the addition theorems was not exhaustive (more sphere geomefries 

and multipole moments couldhave been tested) the results are consistent for the five tests. The results of 

the numerical testing can be summarized as follows: 
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1. Although the theorems of Cruzan differ mathematically—principally in formalism—from the 

pure-orbital theorems derived in this work, they are numerically equivalent and superior with 

regards to computational speed. 

2. Although the theorems of Liu et al. use the same formalism as the pure-orbital theorems, they 

differ mathematically. Since the pure-orbital theorems were rigorously derived, it can be 

concluded that errors exist in the Liu et al. theorems. 

3. Numerical testing verifies that the theorems of Liu et al. do not even approximately translate the 

three multipole fields for the five geometries tested. It can therefore be concluded that, in 

comparison to the Cruzan/pure-orbital theorems, the Liu et al. theorems are in error. 

4. For specific sphere geometries (e.g., Test 1), the Cruzan/pure-orbital theorems approximate the 

translated fields as a function of frequency. However, for most frequencies and scattering 

geometries, the theorems miscalculate the translated fields with errors up to several hundred 

percent. 

The results are fairly stark: For current practical applications, translation^ addition theorems are 

neither efficient or accurate for the modeling of multiple scattering over a range of frequencies and particle 

configurations. A remaining question arises of why this is the case. The addition theorems have been 

rigorously derived by Cruzan. This work rederived the addition theorems through an independent method 

(integral transform) and formalism (UVW multipole fields vs. LNM spherical wave fiinctions), and arrived 

at expressions that are numerically identical to Cruzan's. Since no approximations were made in either 

derivation, the addition theorems must be considered as exact expressions. Yet the numerical tests show 

far from accurate results for n„ax up to 16. 

The most probable answer is that the addition theorems are just not accurate unless the expansions 

are carried out to high multipole orders, possibly on the order of «„„ = 50-500. Since the computations 

take so long for even small values of «„ax, we cannot determine whether this is true or not with current 

computer hardware. However, we can look at other multipole expansions and their convergence behavior. 
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4.3 (c) Plane Wave Expansion Tests 

For a comparison to the addition theorem expansions, the plane wave expansions in Eqs. 3.221, 

3.224, and 3.225 were numericaUy tested in the same frequency range and with the same material 

properties as were the addition theorems. The evaluation point for the plane wave expansions was placed 

on the z-axis at 3.4 cm from the origin. This was the same distance as sphere p in Test 1 of the addition 

theorem tests. To determine convergence and accuracy, the plane wave expansions were compared to the 

exact plane wave expression (COs(kd)) as a function of frequency (kd) and n,^ Due to the simpUcity of 

the expansions, the computations were fast (from a few seconds to several minutes). However, beyond »«„ 

= 84 the test program failed due to internal errors. 

Figures 4-22 and 4-23 show the convergence behavior of the plane wave expansions for the UVW 

vector multipole fields. Figure 4-22 displays the convergence from »™, = 2 to «„« = 16, whereas Figure 4- 

23 displays the convergence from n„^= 10 to n^ = 80. For comparison, the convergence of the 

Cruzan/pure-oibital addition theorems in Test 1 are shown in Figure 4-24 viith the same Unear scale. 
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FIGURE 4-22. Convergence for the plane wave expansion of the IJVW vector multipole fields, from n^ 
= 2ton„„=16. 
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FIGURE 4-23. Convergence for the plane wave expansion of the tJVW vector multipole fields, from n^a 
==10to«,^ = 80. 
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FIGURE 4-24. Convergence for the Cruzan/pure-oibital addition theorem, Test 1, from n^a - 2 to «»,„ - 
16. 

Comparison of the addition theorem convergence curves with the plane wave expansion 

convergence curves demonstrates that the slow convergence of the addition theorems is not unusual, but 

may be a general feature of multipole expansions. In fact, the addition theorems appear to converge faster 
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than plane wave expansions. Figures 4-25 and 4-26 display the spectra (field amplitudes as a function of 

fi^quency) for the plane wave expansions of the longitudinal multipole field U and magnetic multipole 

field W. Spectra for «„„ = 16 and n^^^ = 84 are shown and compared with the exact value for the plane 

wave(cos(M)). 

Plane \Nave Expansion, U Multipole Field 
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FIGURE 4-25. Spectra ofthe plane wave expansion ofthe longitudinal multipole field U. Expansion at 

rimax = 84 overlays cos(kd) to within resolution of plot. 
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FIGURE 4-26. Spectra ofthe plane wave expansion ofthe longitudinal multipole field W. 
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At n^ = 16, the longitudinal multipole field converges at low fi-equency (< 0.2 MHz), but 

deviatesat higher frequencies. At n^ = 60, the longitudinal multipole field (Figure 4.23) converges to the 

exact values(cos(M))for the entire fi^quency range, and completely ovelays the cos(fe/) curve in 

Figure 4-25. The magnetic multipole field (Figure 4-26) shows large deviations at n^ = 16, but converges 

for n„ca = 84 to the cos(M) curve at low and mid fi-equencies (kd < 80). 

Figures 4-27 and 4-28 display the percent deviation of the plane wave expansion field anq)litudes 

the exact plane wave amplitude averaged over the fi-equency range ( J] COs[A:(v) ■ d\). Again from 
^max  v=0 

the longitudinal and magnetic multipole fields are shown for n„ac = 16, 50, and 84. 
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FIGURE 4-27. Percent deviation of the plane wave expansion of the longitudinal multipole field U from 
the exact value cos(kd) averaged over fi^quency band. 
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FIGURE 4-28. Percent deviation of the plane wave expansion of the magnetic niultipole field W from tiie 
exact value cos(fe/) averaged over fi^uency band. 

Figures 4-27 and 4-28 cleaity show how the plane wave expansions converge at low frequencies 

first and tiie progression of the convergence to higher frequencies. Table 4-8 tabulates tiie average percent 

deviation of the plane wave expansions for n„^ = 16,50, and 84, showing the improvement in convergence 

with higher n^. Table 4-8 also shows the percent deviation results from two otiier test geometiies 

(distances). Table 4-9 compares tiie average deviations from flie plane wave expansions wifli tiiose from 

the addition tiieorem tests (Cnizan/pure-oibital theorems) for n^:^ = 16. 
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TABLE 4-8. Average deviation of plane-wave expansion from the exact value cos(M) for each 

multipole field and three n„ax values. 

:     ,                                                    Plane Wave Expansions 

'   ttmitY U(%dev) V (% dev) W (% dev) 

Test 1: J=3.4cm 
16 64.2 82.2 96.0 

50 4.85 50.5 75.1 

84 7.85 X 10-' 20.2 44.4 

Test 2: (3? = 1.4 cm 
16 23.1 66.1 99.4 

50 6.94 X 10-' 11.7 11.7 

84 6.94 X 10-' 11.7 11.7 

Test 4: rf=14.0cm 
16 91.7 97.3 97.7 

50 73.2 85.8 98.6 

84 54.1 79.6 87.9 

TABLE 4-9. Comparison of deviations between plane-wave expansions and addition theorems for n^ax '■ 
16. 

>•- :          Test TJ7%dev)   ' V (% dev) :    ^''W(%aev)      ~ 
Plane Wave Expansions f«„^ = 16) 

1 64.2 82.2 96.0 

2 23.1 66.1 89.2 

4 91.7 97.3 97.7 

I-           Average 59.7 81.9 94,3 

Cruzan/Pure-Orbital Addition Theorems (n„ax = 16) 
1 6.38 54.2 57.3 

2 4.25 68.0 97.5 

4 20.5 120 120 

i"  "    Average 10.4 ■   '80.7       ' 91.6 

The results from numerical testing of the plane wave expansions tells us that we should not be too 

surprised that the addition theorems do not converge at n„ax = 16. Tables 4-8 and 4-9 indicate that the 

plane wave expansions and addition theorems have similar convergence behavior. Similarities include the 

following: 

1. For both plane wave and addition theorem expansions, the longitudinal multipole field converges 

faster than either the electric or magnetic multipole fields. 

2. Although the longitudinal multipole field converges faster for the addition theorems, the electric 

and magnetic multipole fields show about the same convergence resuhs (deviations) at n„ax = 16 

for both plane wave and addition theorem expansions. 
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3'.    The convergence for the plane wave expansions, and to some extent the addition theorems, is 

proportional to the distance of the evaluation point or target sphere. (Test 4, which is the farthest 

at 14.0 cm, displayed the slowest convergence for both plane waves and addition theorems.) 

4.3 (d) Discussion 

The results indicate that the addition theorems converge too slowly for practical application to 

multiple scattering algorithms. This slow convergence is not due to algorithmic errors, but is inherent in 

the general nature of vector multipole expansions. It should be noted that part of the slow convergence for 

the addition theorems in this work is due to the fact that the computations are performed for 100 separate 

frequency steps in order to determine their behavior as a function of frequency. Most published work using 

addition theorems confine their simulations to one of a few frequencies, and are therefore able to compute 

the results up to lOOx faster. 

Although many researches resort to recurrence relations to compute the addition theorems and 

subsequent field translations much more quickly, their computations severely underestimate n„«. Borghese 

et al. only went to «„„ = 3 with their vector field translations.'^ Fuller justifies this by noting that the wave 

frequency, sphere sizes, and sphere separations were in the Rayleigh region of scattering (kd< I)'' 

Similarly, Mackowski claimed convergence of electromagnetic field franslations for «„^ = 2-10 for kd= 

0.1, n„,a. = 3-6 for kd= 1, and n„^ = 14 for M= lO.'"" Gumerov and Duraiswami also indicate that the 

addition theorem expansions for the longitudinal field can be truncated at «„« » 10 for W < 10."' In 

comparison, none of the addition theorems in the numerical tests of this work converge by «„ax = 16 for the 

kd< 1 region, as shown by Figures 4-16 through 4-21. 

Why is there a such a large discrepancy between the published results and the results of this work? 

A closer look at the published results reveals four reasons: 

1.   The criteria for convergence in the published results appears to be a relative flattening of the 

translated field values as a fiinction ofn^J'''''"' Figures 4-4 through 4-9 show that several of 

the translated field values do flatten in the «„„ =2-16 range. However, this flattening does not 

correspond to a convergence to what the values should be (the untranslated field), as shown in 
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Figures 4-10 through 4-13, and Figures 4-16 through 4-19. Rather, the flattening is most likely a 

transient plateau region, much like that for the electric multipole field in Figure 4-24. 

2. None of the published results found to date compare the addition theorem results themselves to the 

actual, untranslated field results. Rather, the addition theorems are used to calculate the sphere-to- 

sphere scattering coefficients, and the scattering results are used to determine convergence. This 

is not a good test for the accuracy and convergence of the addition theorems, as it can be shown 

that the scattering solutions can plateau (flatten) at low «„^, although the addition theorems are 

grossly inaccurate at those n„« values. Again, there is a confusion between convergence and a 

transient plateau region, which leads to accuracy errors. 

3. Several of the published results are for spheres in a geometric configuration which may bias the 

convergence (for example, along the x, y, or z axis).™''"" In comparison, the configurations for 

this work's numerical tests were chosen at random and represent arbitrary distances and 

orientations. 

4. Only a few of the published results found to date look at convergence of the addition theorems 

across a sufficiently wide and detailed frequency (or kd) range.™''' Rather, only a few values for 

kd are selected and analyzed. As noted, the longitudinal multipole field converges to the actual 

(untranslated) values at certain frequency values, but widely diverges at others. 

Some of the most detailed studies of the addition theorems are by Liang and Lo, and Bruncing and 

Lo.™''" Although they did not directly evaluate the addition theorems, but rather looked at two-sphere 

scattering solutions, they did evaluate their results across a broad range of frequencies {kd) or sphere 

spacings. They also compared their results to ray-optics solutions and experimental measurements. 

Although the addition theorem approach predicted the overall characteristics of the scattering, 

discrepancies are present between the addition theorem approach, ray-optics solutions, and experimental 

data. 

It should be noted that single sphere scattering can provide a very good approximation of the 

general scattering characteristics for a collection of spheres. Therefore, testing the addition theorems by 
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using multiple sphere scattering may not be a good approach since the single sphere scattering contribution 

is not separated out m the solutions. This is probably the primary reason why approaches which use 

addition theorems continue to be researched and published with little acknowledgement of their poor 

accuracy and convergence. The single scatterer contribution overwhelms any errors introduced by the 

addition theorem translations. 

From the results of the numerical testing of the translational addition theorems derived in this 

work, the following conclusions and recommendations are made: 

1. The convergence and accuracy of the addition theorems vary as a function of frequency, distance, 

target (p) sphere size, and orientation. Therefore, all of these parameters must be considered in 

determining convergence and accuracy. 

2. The convergence and accuracy of the addition theorems vary differently for each of the three 

multipole fields. 

3. Convergence and accuracy are not equivalent for the addition theorem expansions. Although the 

translated vector field amplitudes may flatten with n„ax, implying convergence, in the cases 

studied the amplitudes still deviated considerably (up to several hundred percent) from the actual 

vector field. The flattening is therefore probably a plateau region, and not a true convergence. 

4. Convergence of multiple scattering solutions is not a test for convergence of translational addition 

theorems. 

5. Initial plane wave expansions must also be given due consideration with respect to convergence. 

The convergence and accuracy problems presented by the use of addition theorem expansions will 

probably only be remedied by either finding mathematical methods to accelerate the addition theorem 

convergence or foregoing addition theorem expansions altogether in the multiple scattering theory. 

Chapter 8 presents a few ideas of how this may be achieved. 
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CHAPTER 5 

RESULTS: SCATTERING MODELS FOR MULTIPLE SPHERES 

Although numerical testing showed that the translational addition theorems had significant 

convergence and accuracy limitations, scattering models were nonetheless constructed and tested with the 

theorems to demonstrate the general concept of the approach. Additionally, previous work has shown that 

such an approach produces results that are close to expected and experimental values. ' ■ '     We were 

therefore curious as to how such results could be obtained in light of the deficiencies of the addition 

theorems. 

Three types of scattering models were developed and tested. These models were the following: 

1. Elastic wave scattering in the spatial domain, yielding scattered wavefield images. 

2. Elastic wave scattering in the frequency domain, yielding scattered wavefield spectra. 

3. Electromagnetic scattering in the frequency domain, yielding scattered wavefield specfra. 

The spatial domain models represent a "virtual microscope" where the computer model creates images of 

the fields and their cartesian components at the microscopic or particle size level. Likewise, the frequency 

domain models create a "virtual spectrometer" where the behavior of the fields as a function of frequency 

are examined. The results of these models for various particle configurations will now be presented. 

5.1 Elastic Wave Scattering in the Spatial Domain 

Spatial domain models for elastic wave scattering were constructed according to the flow diagram 

in Figure 3-7. Each of the fields (longitudinal, shear-electric, and shear-magnetic) and their cartesian 

components were evaluated at points comprising a square lattice of user-selected size and resolution. This 

grid constituted the image plane of the model with each point as a pixel. The multiple scattering models, 

employing wavefield franslations and iteration, were compared to single scatterer models, where the initial 

plane waves are scattered only once by each particle and the scattered fields superimposed at the evaluation 

points. 

The simplest particle configuration to look at is a pair of identical spheres aligned along the 

direction of the plane wave propagation. For the following figures, the two spheres were quartz particles 
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(rocks) in ice, with diameters of 1.0 cm and separated by 2.0 cm center-to-center. The acoustic properties 

of ice and quartz were sufficiently different to clearly show scattering phenomena such as reflection, but 

not too different to preclude some types of wave propagation (refraction through the particle, for instance). 

The acoustic properties were obtained from Ensminger.'" 

Figures 5-1 through 5-4 show scattered wavefield images of the two-particle configuration with an 

elastic wave frequency of 0.5 MHz. (Note feat feese images could also correspond to other particle 

size/frequency range combmations, such as 0.5 cm/1.0 MHz, 0.1 cm/5.0 MHz, and so forth.) Various 

wavefields and components are presented to show how the models reproduce physical phenomena such as 

focusing and mode conversion. To highlight the scattering behavior and any differences between the 

multiple and single scatterer models, only fee scattered wavefields are imaged without the superposition of 

fee incident plane wave. 

Figures 5-1 and 5-2 display the wavefield images arising from the interaction of a purely 

longitudinal plane wave (propagating from fee left or -z direction) with the two quartz spheres. Figure 5-1 

shows fee z-component of the longitudinal field, illustrating fee focusmg of fee longitadinal wave by the 

two spheres. The multiple scattering model (left unage) and single scattering model (right image) are 

plotted to fee same color scale, and show subtle differences m scattered field intensity. The overall patterns 

of fee scattered fields, however, are the same. 

3 

{ 

*i 

FIGURE 5-1. Color plots from fee multiple scattering model (left) and single scattering model (right) of 
fee scattered longitudinal wave z-component arising from an incident longitudmal wave. 
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FIGURE 5-2. Color plots from the multiple scattering model (left) and single scattering model (right) of 
the scattered shear-electric wave y-component arising from mode conversion from an incident longitudinal 
wave. 

Figure 5-2 shows flie y-component of the shear-electric field arising from mode conversion of the 

pure longitudinal incident plane wave from the two quartz spheres. Again, the wavefield patterns appear 

nearly identical, but the amplitudes vary to some extent. Figures 5-1 and 5-2 also faithfully reproduce other 

features of elastic wave scattering such as the forward scattering of the longitudinal wave and the more 

sideward scattering of the shear wave. 

Figures 5-3 and 5-4 display wavefield images arising from the interaction of a mixed incident 

plane wave (50% longitudmal, 50% shear) with the two quartz spheres. Figure 5-3 again shows the z- 

component of the longitudinal field, illustrating the focusing of the longitudinal wave by the two spheres. 

However, for this case, the wavefields from the multiple scattering model and single scattering model differ 

in both intensity and pattern. The asymmetry displayed in the multiple scattering image arises from 

translation of the asymmetric shear-magnetic field which changes it to a shear-electric field. The franslated 

field is subsequently mode converted to a longitudinal field upon rescattering. This feature is absent from 

the single scattering image since tiie shear-magnetic field can only be converted into another field by 

franslation. The shear-magnetic field is decoupled from the shear-electric and longitudinal fields in the 

single particle scattering solutions. 
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FIGURE 5-3. Color plots from the multiple scattering model (left) and single scattering model (right) of 
the scattered longitudmal wave z-component arising from an incident mixed longitudinal-shear wave. 

IMi*' 

FIGURE 5-4. Color plots from the multiple scattering model (left) and single scattering model (right) of 
the scattered displacement wave z-component (longitudinal + shear) arising from an incident mixed 
longitudinal-shear wave. 

Figure 5-4 displays the z-component of the entire displacement field (longitudmal + shear waves), 

with the more isofropic scattering of the shear waves domioating. Here, both the multiple scattering and 

single scattering models show asymmetric field patterns due to the inclusion of the shear-magnetic waves 

in tiie total displacement field. Variations in mtensity between the two models are again evident. 
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The results from the two-particle simulations reproduced expected behavior for both single and 

multiple scattering. Processes such as refraction (focusing) and mode conversion of longitudinal to shear- 

elecfric waves were demonstrated, as well as mode conversion of shear-magnetic waves to shear-elecfric 

and longitudinal waves due to franslation and multiple scattering. These results verified that the models 

were performing as intended and producing physically realistic effects. Additionally, the similarity 

between the single scattering and multiple scattering results was surprising. 

The spatial domain elastic wave models were further tested with simulations of two-dimensional 

configurations of 16 particles (Figure 5-5). The first particle configuration was a 4x4 square lattice of 

quartz particles of 1.0-cm diameter and spaced every 2.0 cm (Figure 5-5, left). The second particle 

configuration consisted of a random dispersion of quartz particles with diameters varying from 0.8 to 1.4 

cm (Figure 5-5, right). The 16-particle configurations were tested at various frequencies, and results are 

shown for 0.1 MHz. A mixed (50% longitudinal + 50% shear) plane wave was used m the simulations, and 

was superimposed on the scattered wavefields to give a fruer representation of the elastic fields in the 

material system. 
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FIGURE 5-5. Two-dimensional, 16-particle configurations for spatial domain simulations, ordered lattice 

structure (left) and random structure (right). 
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Figure 5-6 shows the z-component of the longitudinal fields from the ordered Oeft image) and 

random (right image) particle configurations. Both unages are plotted to fee same color scale. It is readily 

apparent that the higher elastic wave velocities of the particles shortens the field wavelengths mside the 

particles. This wavelength squeezing inside the particles is also accompanied with an increase in field 

amplitude withm the particles. Additionally, the random particle configuration displays higher localized 

wavefield concentrations than the ordered configuration. The higher amplitudes are only associated with 

some particles, however, and oflier particles in the random configuration show lower amplitudes than 

present in the matrix. 

Figure 5-7 displays the x-component of the shear-electric fields m tiie ordered (left) and random 

(right) particle configurations. Agam, both unages are plotted to the same color scale, and the particles for 

both ordered and random arrangements show wavefield amplitude enhancements. As with the longitudinal 

wave, specific particles withm flie random configuration significantly concentrate the wavefield energy 

more than others. 

FIGURE 5-6. Color plots of the total longitudinal wave z-component from an ordered (left) and random 
(right) configuration of 16 quartz particles in ice, with an mcident mixed longitudinal-shear wave. 
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FIGURE 5-7. Color plots of the total shear-electric wave x-component from an ordered (left) and random 
(right) configuration of 16 quartz particles in ice, with an incident mixed longitudinal-shear wave. 

An unexpected observation from Figure 5-7 is that the shear-electric wave appears to be 

attenuatmg as it progress through the ordered lattice from left to right. This result probably arises from 

mode conversion of the shear-electric fields to longitudinal fields. However, multiple scattering effects 

must also be responsible for fliis attenuation since mode conversion from single particle scattering would be 

uniform throughout the particle configuration, and would therefore results m a uniform (non-attenuatmg) 

shear-electric wave. It is mteresting to also note that such an attenuation is not observed for the 

longitudmal wave in Figure 5-6. It is also not apparent in the random dispersion, so may be associated with 

a type of band-gap phenomenon for ordered lattices. 

Finally, Figure 5-8 displays the z-component of the total displacement field (longitudinal + shear 

waves) for the two particle configurations. As with Figures 5-6 and 5-7, the particles in the random 

dispersion show significant concentrations of field energy. The nonuniformity of the random particle 

configuration also gives rise to locaUzed areas of higher wavefield amplitudes in the matrix. 
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FIGURE 5-8. Color plots of the total displacement in the z-direction for an ordered (left) and random 
(right) configuration of 16 quartz particles in ice, with an incident mixed longitudinal-shear wave. 

The results from the 16-particle simulations show that random particle dispersions may produce 

higher field concentrations both within and outside the particles due to the nonuniform structure and 

resultant scattering interactions. An additional result is that the scattering interactions by themselves can 

lead to attenuation mechanisms not associated with the inherent absorption properties of the materials 

comprising the matrix or particles. Such attenuation may be related to band-gap phenomena for ordered 

particle arrays. 

5.2 Elastic Wave Scattering in the Frequency Domain 

5.2 (a) Results for Small Dispersions 

Frequency domain models for elastic wave scattering were constructed according to the flow 

diagram in Figure 3-7. Each of the fields (longitudinal, shear-electric, and shear-magnetic) and their 

cartesian components were evaluated at a smgle point located a fixed distance from the particle 

configuration. This distance was set equal to the longest wavelength evaluated—the longitudmal 

wavelength at the lowest frequency. Placing the evaluation point here eliminated interference effects 

between the wavelength of the scattered waves and the free propagation length. 

The scattering computations were performed for 100 equally-spaced frequencies. The frequency 

stepsize was 0.01 MHz and the range was 0.01 to 1.00 MHz. The frequency was converted to the 
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dimensionless parameter Win the spectra, where k is the wavevector of the longitudinal or shear wave, and 

d is the average particle diameter. The Mparameter is more physically insightful since the wavelengths of 

the longitudinal and shear waves differ for the same frequency due to the differences in wave velocities. 

As with the spatial domam models, multiple scattering simulations were compared to smgle 

scatterer simulations to determine the influence of the multiple scattering interactions. Comparisons were 

also drawn between ordered and random particle configurations. The materials were again ice for the 

matrix and quartz for the particles. These materials were found to be a good compromise for providing 

particles with neither too low or too high of contrast with the matrix. These materials were additionally a 

fair approximation for many industrially useful metals, ceramics, and hard plastics. 

Both two- and three-dimensional particle configurations were simulated. The two-dimensional 

dispersions included 16-particle configurations similar to those already examined with the spatial domain 

methods. Figure 5-9 shows an ordered lattice of 16 particles already used in the spatial domain simulations 

(left), and a random arrangement similar to the one previously studied but with uniform particle sizes 

(right). For both configurations the particle diameters were 1.0 cm. The lattice particles were separated by 

2.0 cm center-to-center. 
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FIGURE 5-9. Two-dimensional, 16-particle configurations for frequency domain simulations, ordered 
lattice structure (left) and random structure (right). 
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Particle sizes were varied for the particle configurations in Figure 5-9 to test this variable. Two- 

dimensional square lattices containing 12, 8, and 4 particles were also tested. The three-dimensional 

particle configurations included 8 particles positioned at the comers of a cube (Figure 5-10, left) and 8 

particles with random positions (Figure 5-10, right). The particles in both configurations had 1.0-cm 

diameters. The cubically-ordered particles were separated by 2.0 cm center-to-center. 

TOP 
VIEW 

_ _ SIDE 
VIEW 

^ 

:H^- 

FIGURE 5-10. Three-dimensional, 8-particle configuration for frequency domain simulations with cubic 
(left) and random (right) structures. 
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Figures 5-11, 5-12, and 5-13 display the spectia for the longitudinal, shear-electric, and shear- 

magnetic fields respectively for the 16-particIe square lattice configuration. The spectra contain gaps 

where the computations failed to converge within a preset (250) iteration Uniit. It is believed that setting a 

higher iteration limit would not have yielded convergence since the wavefleld coefBcients showed no 

convergence behavior within the 250 iterations. Where the computations did converge they converged 

rapidly, usually within less flian 30 iterations. The spectra for the lon^tudmal and shear-electric fields 

particularly display significant changes with mcreasing n^ Due to the length of time for performing the 

computations (about 10 hours for w„„ = 5), computations for «;„at > 5 would have been impractical, 

Convergence across the spectra range could not therefore be achieved, but is apparent for the M ^ 6 region 

0.4 

16-Particle 2D Lattice 
Longitudinal Field 

nmax = 2 
nmax = 3 
nmax = 4 
nmax = 5 

FIGURE 5-11. Power spectrum for longitudinal wave propagatmg through a 16-particle, two-dimensional 
square lattice of 1.0-cm quartz particles in an ice matrix. 
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nmax = 2 
nmax = 3 
nmax = 4 
nmax = 5 

FIGURE 5-12. Power spectra for shear-electric waves propagating throu^ a 16-particle, two-dimensioial 
square lattice of 1.0-cm quartz particles in an ice matrix. 

0.8 

u. 0.6 

i 
CL 

ro 0.4 

8 
Q. 

0.2 

0.0 

16-Particle 2D Lattice 
Shear-Magnetic Field 

nmax = 2 
nmax = 3 
nmax = 4 
nmax = 5 

FIGURE 5-13. Power spectra for shear-magnetic waves propagating through a 16-particle, two- 
dimensional square lattice of 1.0-cm quartz particles in an ice matrix. 

Figures 5-14, 5-15, and 5-16 display the spectra for the longitudmal, shear-electric, and shear- 

magnetic fields respectively for the 8-particle cubic configuration. Again the spectra contain significant 

gaps where the computations foiled to converge within a preset (250) iteration limit The computations for 
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the 8-particle 3D configurations could be carried out to higher n^, however, since the number of particles 

were less than for the 16-particle 2D configurations. It is readily seen that the spectra converge in the W^ 

10regionat«m« = 7. 
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FIGURE 5-14. Power spectiiim for longitudinal wave propagating flirough an 8-particle, three-dimensional 
cube of 1.0-cm quartz particles in an ice matrix. 
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FIGURE 5-15. Power spectrum for shear-electric wave propagating tiu-ough an 8-particle, tiiree- 
dimensional cube of 1.0-cm quartz particles in an ice matiix. 
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FIGURE 5-16. Power spectrum for shear-magnetic wave propagating through an 8-particle, three- 
dimensional cube of 1.0-cm quartz particles in an ice matrix. 

The spectra in Figures 5-11 through 5-16 indicate that the longitudinal, shear-electric, and shear- 

magnetic fields produce different and distinctive spectra. The shear-electric field appears to peak at higher 

lvalues than the longitudinal field, and displays broader features. The longitudinal spectra contains sharp 

features superimposed on broad peaks, for example at M = 7.5. Most interesting, however, is the high 

resolution structure in the shear-magnetic spectra, displaying many more peaks than either longitudinal or 

shear-electric spectra. 

5.2 (b) Comparison of Ordered vs. Random Structures 

Figures 5-17 and 5-18 compare the longitudinal and shear-electric spectra of the 16-particle square 

lattice configuration with the 16-particle random configuration. Although smaU, overall amplitude changes 

are seen, the general characteristics of the spectra are the same.  Similar results are observed for the 8- 

particle cube and random configurations (Figures 5-19 and 5-20). The similarity between the spectra is 

probably due to single-particle scattering dominating the characteristics of the spectra. The particle 

configurations tested may additionally be too small to show any significant order-disorder diEferences. 
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16-Particle 2D Configuration 
Longitudinal Held, n„^= 5 

Lattice 
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FIGURE 5-17. Power spectra for longitudinal waves comparing 16-particle ordered and random 
configurations of 1.0-cm quartz particles in an ice matrix. 
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FIGURE 5-18. Power spectra for shear-electric waves comparing 16-particle ordered and random 
configurations of 1.0-cm quartz particles in an ice matrix. 
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FIGURE 5-19. Power spectra for longitudinal waves comparing 8-particle cubic and random 
configurations of 1.0-cm quaitz particles in an ice matrix. 
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FIGURE 5-20. Power spectra for shear-electric waves comparing 8-paTticle cubic and random 
configurations of 1.0-cm quartz particles in an ice matrix. 
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5.2 (c) Comparison of Multiple vs. Single Scattering Computations 

In addition to the multiple scattering computations, single scattering computations were performed 

to determine whether singje scattering was the predominant contributing factor to the spectra a^ suggested 

by the ordered structure-random stincture comparisons above. For tiie smgle scattering simulations, the 

incident plane wave is scattered only once by each particle and the resultant scattered waves are added at 

flie evaluation point Figures 5-21 tiffough 5-24 compares spectia from multiple and single scattering 

computations. Again, the longitudinal and shear-electric fields are shown for flie 16-particle 2D square 

lattice and 8-particIe 3D cube. 
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FIGURE 5-21. Power spectia for longitudinal waves comparing multiple vs. single scatterer computations 
for the 16-particle random configuration of 1.0-cm particles. 
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FIGURE 5-22. Power spectra for shear-electric waves comparing multiple vs. single scatterer 
computations for the 16-particle random configuration of 1.0-cm particles. 
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FIGURE 5-23. Power spectra for longitudinal waves comparing multiple vs. single scatterer computations 
for the 8-particle random configuration of 1.0-cm particles. 
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e-Partide 3D Random 
Shear-Electric Held, 11^^= 7 

Multiple Scattering 
Single Scattering 

FIGURE 5-24. Power spectra for shear-electric waves comparing multiple vs. single scatterer 
computations for the 8-particle random configuration of 1.0-cm particles. 

The results firom the multiple vs. single scattering comparisons indicate that, except for the regions 

of nonconvergence in the multiple scattering, the spectra are virtually identical. This clearly demonstrates 

that single particle scattering overwhelmingly dominates the spectral characteristics for these particle 

configurations, material properties, spectral region, and W;,^ values. Since convergence of the spectra is 

observed for low kd(kd<.6ain„^=5aadkd^l0 at n^=7), we can conclude that convergence of the 

computations is not a fector in the predominance of the single particle scattering. The primary effect of the 

multiple scattering is to produce bands in the specti'a where the solutions do not converge. 

5.2 (d) Convergence and Efficiency of Computations 

The appearance of bands representing nonconvergent solutions in the spectral simulations is 

problematic. Initially, the width of the bands increase with increasing n„uvc indicating that the percent of 

nonconvergent solutions is increasing. This is counter-intuitive since higher «„„ should yield more 

accurate solutions to the scattering. Further simulations with the 4-particle 2D square configuration shows, 

however, that the nonconvergence bands peak at «„„=5 and then either plateau or start to decrease slightly 

with higher n,„ax values (Figure 5-25). It is possible that if the simulations were continued to higher «„^ 
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values (currently not practical due to the slow speed of the computations), that the nonconvergence bands 

would continue to decrease and eventually disappear. 

Another interesting feature of the nonconvergence bands is that fliey appear independent of 

particle number in the configuration, but are dependent on structure and particle size. Tables 5-1 and 5-2 

list the percent spectral coverage of the nonconvergence bands as a functions of particle configuration and 

n„ax. Both the 16-particle 2D lattice and 8-particle 3D cube have identical nonconvergence coverage 

(percent) values. The random analogs to these structures show higher nonconvergence coverage values, as 

does the 16-particle lattice with larger (d = 1.5 cm) particles. Table 5-2, however, shows that there is 

ahnost no dependence of the nonconvergence bands on the particle number in the configuration. 

n, max 

FTGUKE 5-25. Percent of iterative computations not converging across spectral range. 
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TABLE 5-1. Percent of iterative computations not converging across spectral range (d is particle diameters 

in cm). 

16-particle 
2D lattice 
d=1.0' 

16-particle 
2D random 

d=1.0 

16-particle 
2D lattice 
d=1.5 

16-particle 
2D random 
d = 0.8-1.4 

8-particle 
3D cube 
d = 1.0 

8-particle 
, 3D random 

d=i.O 

2 3 6 8 4 3 6 

3 7 12 13 6 7 13 

4 13 19 25 19 13 19 

5 17 28 36 39 17 32 

6 15 37 

7 15 42 

TABLE 5-2. Percent of iterative computations not converging across spectral range (particle diameters are 

a constant 1.0 cm). 

p-;'-  ■     "ffiM'.    '   '. 16-particle 
2D lattice 

12-particle 
2D lattice 

8-particle 
2D lattice 

4-particle 
2D lattice 

2 3 3 3 2 

3 7 7 7 6 

4 13 13 13 13 

5 17 17 17 17 

It is difficult to draw definitive conclusions from this data, other than the nonconvergence of the 

multiple scattering computions is 

1. frequency dependent 

2. structure dependent (random structures yield higher nonconvergence) 

3. dependent on particle size 

4. independent of particle number 

It is possible that the dependence on particle size is actually a dependence on particle-particle separation, 

since larger particles are closer together in a lattice with fixed particle spacings. This dependence will be 

explored more in depth in the next section. 

The convergence behavior of the single-scattering interactions was also investigated. Additional 

single-scatterer simulations were performed for the 8-particle 3D random configuration in order to 

detennine the convergence behavior of the fields across the specfral range tested. Since the single-scatterer 

computations were exft-emely rapid due to not having to calculate the multiple scattering interactions, the 

simulations were ran to higher n„„ values than possible with the multiple scattering computations. Figure 
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5-26 displays the results of these simulations, and shows plots of the convergence frequency as a function 

ofn^ The convergence frequency was defined to be the highest fi^quency at which the field did not vary 

by more flian 1% from the comparison. The comparison was chosen to be the spectral results for n^a = 20, 

since at that n^ value all the fields converged to within 1% across the entire spectral range. 

Figure 5-26 indicates that the longituduial and shear-electric fields converge at the same rate, and 

ftat the shear-magnetic field converges faster. The convergence behavior for all three fields is fairly 

uniform. The results demonstrate that convergence is strongly fi:equency dependent. They also suggest 

that since the single particle scattering does not converge for the entire frequency range until n^ = 19 

(mainly for the shear-electric field—the others converge faster), that the multiple scattering compulations 

should also be ideally performed at n„ax = 19- 
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FIGURE 5-26. Convergence frequency vs. n„^, showing frequency at which 99% convergence is achieved 
with respect to n„Hx = 20. 
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Running the preceding simulations at «„«. = 19 would unfortunately take much too long for 

practical considerations. Table 5-3 Usts the computation times for the various particle configurations and 

how they vary with respect to n„„ when modeled with a power law. The power law fit was extremely good 

for the time-«„„ relationship, and the results definitively show that computation time time scales as the 4* 

power of n,„ax for 2D particle configurations, and as the 4.6 power of H„„ for 3D particle configurations. 

From these results we can calculate that even for the 4-particle 2D square dispersion, performing a 

fi-equency-domain simulation at «„„ = 19 would take 74 hours. For the 16-particle square lattice, the n„a. = 

19 computations would require 2215 hours or approximately 92 days. 

TABLE 5-3. Computation time for various particle configurations as a fiinction of «„„ modeled with the 

powerlaw7' = g*(«„,J^. 

Particle Configuration Tfor?7,„ffc = 5 
(hours) 

K 

Two-dimensional 

16-particle lattice, d = 1.0 
16-particle random, d = 1.0 
16-particle lattice, d = 1.5 
16-particle random, d = 0.8-1.4 
12-particle lattice, d = 1.0 
8-particle lattice, d = 1.0 
4-particle lattice, d = 1.0 

10.22 
10.41 
10.78 
10.60 
5.15 
2.10 
0.35 

Three-dimensional 

8-particle cube, d = 1.0 
8-particle random, d = 1.0 

1.77 
1.71 

3.98 
4.16 
4.04 
4.23 
4.04 
4.07 
3.99 

0.017 
0.013 
0.016 
0.012 

7.73 X 10" 
3.00x10 FT 

5.69x10 T" 

4.61 
4.66 

1.02x10- 
9.12x10 

With regards to the number of particles (p) in the dispersion, multiple scattering computations are 

expected to scale as/. This is easy to see smce there arepip-l) non-redundant mteractions, and therefore 

p(p-\) translation coefficients to compute. To check this assumption. Table 5-4 Hsts the results of 

modeling the computation time as a power law fiinction ofp. 

TABLE 5-4. Computation time for two-dimensional square lattice particle configuration as a function of 

the number of particles p, modeled with the power law T = h* (p)   . 

2.47 
2.40 
2.38 
2.34 

3.93 X 10 TT 

1.84x10 :T" 

5.60 X 10" 
0.016 
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Two observations may be noted from Table 5-4. First, J is not 2 as would be expected for the 

multiple scattering computations scaling to the square of the particle number/). This is due to other 

computations performed by the program, such as the single particle scattering calculations and such. These 

"overhead" computations are more apparent due to the small number of particles we are simulating. 

Second, J is decreasing with increasing «„„,. It is probably a reasonable assumption that as n„^ gets very 

large that Jwill asymptotically approach 2. Again, this is due to the multiple scattering computations 

overshadowing the background "overhead" computations as «„„ increases. 

5.2 (e) Results for 91-Particle bcc Dispersion 

A larger particle configuration was tested to determine if multiple scattering would have a more 

pronounced effect with a larger number of particles. The particle configuration was a 91-particle lattice in 

the the shape of a cube and with a body-centered cubic (bcc) structure (Figure 5-27, left). Since the 

computation time for multiple scattering roughly scales as/, accounting for all of the multiple scattering 

interactions would have been impractical. Instead, a nearest-neighbor approximation was used, where 

multiple scattering contributions were calculated for only the nearest 14 neighbors to any particle (Figure 5- 

27, right). The translational symmetry of the bcc structure was also used to advantage. Since the 

translational addition coefficients would be the same for each of the nearest neighbors, independent of 

which particle the fields were being translated to, only 14 sets of translation coefficients required 

computation. 

FIGURE 5-27. Body-centered cubic 91-particle configuration (left) and the 14 nearest neighbors (right) 
used to compute the multiple scattering interactions. 
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The particles were again 1.0-cm diameter quartz spheres in an ice matrix. Simulations were ran 

for three different particle-particle separations (lattice constants c) to produce particle volume fractions of 

10% (c = 2.188 cm), 25% (c = 1.612 cm), and 40% (c = 1.378 cm). Figure 5-28 displays the percent 

spectral nonconvergence for the three particle separations at various «„ar values. Nonconvergence clearly 

increases as the particle separation decreases. The nonconvergence of the 10% volume fiaction lattice is 

similar to that of the 2D square lattice configurations with 1.0-cm particle diameters. Likewise, the 

nonconvergence of the 25% and 40% lattices are similar to those of the random 2D configurations and 2D 

configurations with larger particle diameters. 
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FIGURE 5-28. Percent of iterative computations not converging across spectral range for three 91-particle 
body-centered cubic configurations with particle volume firactions of 10%, 25%, and 40% 

Figures 5-29 and 5-30 display longitudinal and shear-electric field spectm for the 91-particle bcc 

configurations. The spectra are very similar to those of the 8-particle 3D cube (Figures 5-14 and 5-15), but 

^e significantly more marred with spectral bands of nonconvergent solutions. 



131 

._3 

§ 
Q. 

o 
0) 
Q. 

CO 
1 

91-Particle 3D bcc Lattice 
Longitudinal Field, n„^= 6 

Multiple Scattering 

10% particle vol. 
25% particle vol. 
40% particle vol. 

10 

kd 

FIGURE 5-29. Power spectrum for longitudinal wave propagating through a 91-particle bcc-ordered lattice 
of 1.0-cm quartz particles in an ice matrix and for three different lattice constants (particle volume 
fractions). 

91-Particle 3D bcc Lattice 
Shear-Electric Field, n„^ = 6 

Multiple Scattiering 

10% particle vol. 
25% particle vol. 
40% particle vol. 

FIGURE 5-30. Power spectrum for shear-electric wave propagating through a 91-particle bcc-ordered 
lattice of 1.0-cm quartz particles in an ice matrix and for three different lattice constants (particle volume 
fractions). 
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Figures 5-31 and 5-32 display single-particle scattering simulations of tiie 91-particle bcc lattice. 

Comparison with Figures 5-29 and 5-30 again shows that the sin^e particle scattering dominates the 

behavior of the waves, even for the relatively close pack of 40%. 
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FIGURE 5-31. Power spectrum for longjttidinal wave propagating through a 91-particle bcc-ordered lattice 
of 1.0-cm quartz particles in an ice matrix and for three different lattice constants (particle volume 
fractions). 
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FIGURE 5-32. Power spectrum for shear-electric wave propagating through a 91-particle bcc-ordered 
lattice of 1.0-cm quartz particles in an ice matrix and for three different lattice constants (particle volume 
fractions). 



133 

The high degree of nonconvergence for the lattices with 25% and 40% particle volumes strongly 

indicates that particle-particle separation is a primary factor for convergence of the multiple scattering 

calculations. Additional simulations were performed w^ith the 91-particle bcc lattice with the particle 

properties changed to those of plexiglass. This provided a particle-matrix combination with low contrast in 

acoustic properties. These simulations produced spectra with 100% convergent solutions. The results 

suggest that the factors that increase the degree of multiple scattering—small particle-particle separations 

and high acoustic property contrasts—also lead to nonconverging solutions for multiple bands of 

frequencies. 

Finally, the close resemblance between spectra from multiple scattering computations and spectra 

from single scattering computations suggests one or both of the following conclusions: 

1. Single-particle scattering dominates the scattering behavior of particle configurations with up to 

40% particle volume fractions; 

2. The multiple scattering computations do not contribute significantly to the final scattering 

solutions for n„ax values below those required for convergence of the translational addition 

theorems. 

As shown in Chapter 4, convergence of the franslation coefficients for all three multipole fields cannot be 

achieved for «„„ < 16, and would most likely require «„„ values in the range of 50-100 (based on plane 

wave convergence results). With the inefficiency of the current computation method it is not possible to 

perform multiple scattering simulations at such n^ax values. 

5.3 Preliminary Ultrasonic Scattering Model for a Composite Material 

The frequency domain elastic wave scattering model was applied to the simulation of a particulate 

composite material to investigate the feasibility of using such models for industrial applications such as 

nondesfructive evaluation. A polymer nibber filled with inorganic particles was selected as the test 

material. Such materials find uses as tires, thermal insulation, and solid propellants. The density and 

elastic properties of sodium chloride (salt) were used as a generic model for the inorganic solid filler.''^ 

The rubber also had generic properties typical of lightly cross-linked, highly attenuating polymers with 
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,3\ 193,194 
longitudinal wave velocity and density close to that of water (CL = 1.45 X 10 cm/s, p = 1.0 g/cm ). 

Using a Poisson's ratio of 0.49, which is typical for rubber materials, a shear wave velocity of cs = 2.0 x 

10'' cm/s was derived for use in the computations. 

The particles were 200-|xm spheres with volume packing fractions of 10%, 30%, and 50%. The 

particle microgeometries were both ordered (body-centered cubic) and random. The random particle 

configurations were provided by ATK-Thiokol Propulsion usmg a proprietary particle packing code. The 

random particle microstructures provided by ATK-Thiokol Propulsion were spherical conglomerations 

comprised of 12,820 particles (Figure 5-33). Equivalent particle conglomerations were constructed with a 

crystalline bcc structure to test the effects of order and multiple scattering (Figure 5-34). Disks of uniform 

size were cut from the spherical packs to eliminate sample size effects (since the diameter of the 

conglomerate sphere varied with volume packing fraction). The excised disks had a 5.0 mm diameter and 

2.5 mm thickness. 

FIGURE 5-33. Spherical collection of 12,820 particles with a random microstructure. 
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FIGURE 5-34. Spherical collection of 12,820 particles with an ordered bcc microstructure. 

FIGURE 5-35. Disk-shaped collections of 1191 particles (10% packing fraction, left) and 5885 particles 
(50% packing fraction, right) with random microstructures. 
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FIGURE 5-36. Disk-shaped collections of 1177 particles (10% packing fraction, left) and 5637 particles 
(50% packing fraction, right) with ordered bcc microstructures. 

Multiple scattering simulations were found to be much too time intensive and inefficient to be 

performed on the random particle packs. Multiple scattering simulations were possible with the ordered 

particle packs, however, using the translational symmetry of the bcc cubic crystal and the nearest neighbor 

approximation. Smgle scattering computations were also ran for comparison. As an example of the 

difference in computation times between multiple and single scatterer simulations, the computation time for 

the multiple scatterer simulation was 33.11 hours whereas for the single scatterer simulation was 0.35 hours 

(5637-particle pack, n„ax = 4). Although higher n„ax values are desirable for convergence, the long 

computation time limited the n^ax to 4 or less. 

Figures 5-37 and 5-38 display comparisons between spectra from muhiple and single scattering 

computations. The spectra are plotted as functions of actual frequencies (0-2.0 MHz) that are used in 

ultrasonic inspection and evaluation of materials. Equivalent W values (where dis the particle diameter) 

for 2.0 MHz are 1.73 for the longitudinal field and 12.6 for the shear fields. 
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FIGURE 5-37. Comparison of longitudinal field power spectra for multiple vs. single scattering 
computations for a bcc crystal with 50% volume packing fraction. 
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FIGURE 5-38. Comparison of shear-electric field power spectra for multiple vs. single scattering 
computations for a bcc crystal with 50% volume packing fiactiort. 
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The spectra in Figures 5-37 and 5-38 show that the single scatterer approximation captures the 

general features of the ultrasonic spectra reasonably well. Although there are some differences in fine 

detail, the match is good, especially at low fi-equencies (< 0.5 MHz). Of most importance is that flie single 

scatterer approximation shortens the computation time by about lOOx, and works just as fast for random as 

well as ordered particle packings. 

To test the rima criterinm necessary for convergence of the single scattering computations, 

scattering computations were performed for a single 200-jmi NaCl sphere in the rubber matrix and ran to 

high ««« values. Figure 5-39 shows the results of this test. The main conclusion is that single sphere 

scattering converges by «„« = 6 for ultrasonic frequencies of practical use in these materials—0-1.0 MHz. 

Extending the «„„ value to 7 widens the spectral region of convergence to 0-1.5 MHz. 
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FIGURE 5-39. Shear-electric field power spectra for scattering fi-om a single 200-Mm NaCl sphere in a 
rubber matrix, showing convergence behavior for various n^zK values. 
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For the small particle configurations looked at in Section 5-2, the fields were evaluated at a single 

point located a large distance ftom the pack equal to the longest wavelength associated with the lowest 

frequency. This was done to eliminate phase interference effects in the spectra due to the interplay between 

the field wavelength and evaluation point distance. For the larger particle packs of the particle-filled rubber 

simulations, placing the evaluation point a distance from the particle pack introduced additional spurious 

effects in the spectra due to the overall shape of the conglomeration (i.e., the particle pack shape in toto— 

disk, sphere, etc.—introduces a unique scattering signature onto the spectra). 

To eliminate this shape effect the evaluation point was placed close (1.25 mm) to the disk's 

circular face. Although this eUminated the particle pack shape effects, it reintroduced field wavelength- 

evaluation distance interference effects. These interference effects manifested themselves as a periodic 

waviness in the spectra analogous to interference fringes. To reduce this effect, the fields were evaluated 

over several spatiaHy separated points. Figure 540 shows spectra from a smgle point, from a cross-shaped 

configuration of 9 points, and from a square grid of 25 points. Each of the evaluation point configurations 

was 1.25 mm from the disk. 
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FIGURE 5-40. Comparison of longitiidinal field power spectia evaluated at a point, at a cross comprised of 
9 points, and at a square grid comprised of 25 points. 
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As can be seen in Figure 5-40, evaluating all of the fields at a single point produces too much 

position-dependent structure in the spectrum. The use of multiple evaluation points, however, clearly 

resolves the interference effects in the spectra and removes the position bias associated with using a single 

evaluation point. Interestingly, the 9-point cross configuration is almost as good at removing the 

mterference effects as the 25-point square grid. This is probably due to the cross being able to span the 

same spatial distance as the grid but without requu-ing as many points. Although the 25-point grid was very 

good at averaging out the position-dependent spectral structure, it proved to be too time-consuming to 

implement. Instead, the 9-point cross proved to be a good compromise between computation time and 

position bias. 

The testmg of a simulated particle-filled rubber provided insight into the most efficient and 

accurate method for modeling its ultrasonic properties. For particle packs up to 50% particle volume 

fraction the single scatterer approximations works just as well as the current multiple scattering 

computations. Additionally, the single scattering calculations converge at low n„ccc (« 7) for most of the 

frequency range for practical ultrasonic measurements. Finally, evaluating the fields at a single point 

introduces position-dependent interference effects that can be reduced by evaluating the fields over a grid 

or cross configuration of points. 

5.4 Electromagnetic Wave Scattering in the Frequency Domain 

Frequency domain models for electromagnetic wave scattering were constructed by appropriately 

modifying the scattering equations and material properties m the elastic wave models. Instead of 

calculating three fields (longitudinal, shear-electric, and shear-magnetic) as in the elastic wave model, only 

two fields (electric and magnetic) require computation in the electromagnetic case. For material properties, 

the Lame elastic constants are replaced with the dielectric permittivity and magnetic susceptibility. These 

properties, as well as particle size, were varied to simulate a variety of paniculate systems. All of the 

simulations were of the 91-particle bcc configuration pictured in Figure 5-27 or of larger bcc lattices. 

Spectra were computed for both the individual field components and for the total energy of the wave (the 

amplitude of the Poynting vector). 
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Like the elastic wave simulations, multiple scattering computations for electromagnetic waves 

were nearly identical to single scattering computations. Unlike the elastic wave simulations, however, very 

few convergence problems were encountered. Most of the calculations converged within 10 iterations for 

the frequency ranges and n„ax values tested. Nonconvergence was observed for only close particle 

packings (50-60% particle volume), high n„ax (^ 8), and high electromagnetic property contrasts (for 

example, water droplets in air). However, the nonconvergence covered only a small percent of the spectral 

frequencies (about 1%) as compared to the elastic wave simulations. 

A striking feature of the electromagnetic wave simulations was the appearance of band gaps in the 

spectra. The frequency position of these band gaps was a fiinction of the bcc lattice constant and not of the 

particle diameter, indicating that they were photonic band gaps arising from interference and localization 

effects in the lattice. 

Figure 5-41 is the total energy spectrum of LO-^im diameter quartz spheres in an ice matrix, 

plotted with respect to wavelength. The frequency range tested was in the optical (infrared and visible) 

region of the electromagnetic spectrum, and varied from 10-1000 THz (0.3-30 nm wavelength in air). The 

optical properties were obtained from two well-knovm physics textbooks.^'^''^ The six plots represent 91- 

particle bcc lattices with various particle volume fractions. The lattice constants for each of the particle 

volume fractions are listed in Table 5-5. 

TABLE 5-5. Lattice constants for each of the particle volume fractions in the 91-particle bcc lattice 
simulations. 

Particle Volume Fraction (%) Lattice Constant (nm) 
10 2.188 
20 1.736 
30 1.517 
40 1.378 
50 1.279 
60 1.204 
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FIGURE 5-41. Simulated total energy spectrum vs. wavelength of microwaves passing through a 91- 
particle bcc lattice of 1.0-nm quartz particles in ice. 

It is clear from Figure 5-41 that the position of the band gap regions vary with particle volume 

fraction and therefore with lattice constant. Replotting the quartz-ice spectrum as a fimction of ^fl, where k 

is the wavevector and a is the lattice constant, reveals a direct relationship between the band gaps and 

lattice constants (Figure 5-42). The band gap at faj = 14 is particularly consistent for the six particle 

configurations (lattice constants), and it appears that a band gap at ai^roximately ka = 47 is also a general 

feature of the spectra as well. The foi =^ 14 band gap is close to the value of 4.57t, indicatmg that this band 

gap is occurring where the wavelength is equal to 0.44 times the lattice constant. Experimental data from 

bcc colloidal crystals show strong band gaps near wavelengths of 0.7,0.8, and 0.88 a}^ The colloidal 

crystals, however, had a very low particle volume fraction of 1.3%. and photonic band gaps have been 

shown to have a very strong dependence on the ratio between particle radius and lattice constant (r/a)} 

For two-dimensional lattices of dielectric columns, as r/a increases the wavelength of photonic band gap 

decreases, which is consistent with our simulation results and the experimental results, 
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FIGURE 5-42. Simulated total energy spectrum vs. parameter ka of microwaves passing through a 91- 
particle bcc lattic of l.O-^im quartz particles in ice. 

Although the quartz-in-ice simulations are at optical frequencies and micrometer scales, th^ 

could be readily rescaled to microwave frequencies (1-100 GHz) and centimeter scales (1.0-cm diameter 

particles). Figures 5-41 and 5-42 would therefore be applicable to these longer wavelengths and larger 

particle sizes if the optical properties of ice and quartz were assumed to be constant into the microwave 

bands. Unforhmately this is not a good assumption. The electromagnetic properties of water and ice 

change appreciably with frequency, and therefore have to be accurately modeled in order to obtain rehable 

results for microwaves. 

Since the microwave properties of quartz were difficult to find, water droplets in air were modeled 

to test tiie electromagnetic simulations at microwave frequencies. The particles were 1.0-cm diameter 

water droplets arranged in a 91-partcile bcc lattice. Although a random lattice would have been more 

appropriate for modeling atmospheric precipitation such as rain, the bcc lattice was convenient due to the 

translational order and nearest nei^bor ^proximation providing a considerable reduction in computation 

time. Tlie frequency range of the simulations was 1-100 GHz. The microwave properties of the water 

droplets were modeled as a fimction of frequency using tiie Cole-Cole equation.^"'* 
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Figures 5-43 and 5-44 display the computed spectra for water drop configurations at various 

particle concentrations. Due to the difference in electromagnetic properties, the spectra do not look like 

those of the quartz-ice configurations in Figures 5-41 and 542, but rather exhftit much more fine stracture 

and sharp peaks. The existence of photonic band gaps is also less certain for the results in Figures 5-43 and 

5-44. It is possible that some band gap structures may exist in the ka =4-14 region in Figure 5-44, but they 

are not consistent with particle concentration (lattice constant) as in Figure 5-42. 
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FIGURE 5-43. Simulated total energy spectrum vs. wavelength of microwaves passing throu^ a 91- 
particle bcc lattic of l.C-^m water particles in air. 
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FIGURE 5-44. Simulated total energy spectrum vs. parameter ka of microwaves passing through a 91- 
particle bcc lattic of 1.0-|im water particles in air. 

The excellent convergence and prediction of photonic band gap structures by the electromagnetic 

simulations are encouraging. However, it must still be realized that the simulations are essentially 

operating in the single scattering approximation since the multiple scattering calculations do not differ 

significantly from the single scattering calculations. The insufficiency of convergence for the translation 

coefficients remains a major problem, as does the sluggishness and inefficiency of the Computations. 
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CHAPTER 6 

DISCUSSION 

6.1 Prediction of Real Wave Propagation Behavior 

One method for determining the fidelity and accuracy of scattering models is to determme if they 

can predict physically realistic phenomena. Although not quantitative, such an approach can provide 

information on the model's qualitative correctness (i.e., are the basic equations and algorithmic approach of 

the model sound?). 

The results of the elastic and electromagnetic scattering computations exhibit such real world 

phenomena. The spatial domain images for elastic wave scattering reveal focusing effects for longitudinal 

waves (Figures 5-1 and 5-3), mode conversion and a higher degree of sideward scattering for shear waves 

(Figure 5-2), changes in the field wavelength as it passes through media of different elastic properties 

(Figures 5-6 and 5-7), and amplification of fields in localized regions of disorder (Figures 5-6 and 5-7). 

Such effects are based on common acoustic (or wave propagation) principles, and their prediction by the 

elastic wave models is reassuring evidence that the models are functioning in a qualitatively correct 

manner. 

Of even greater interest is the appearance of photonic band gaps in fi-equency domain spectra of 

the electromagnetic scattering models. Photonic crystals, also called photonic band gap materials, have 

been identified and studied only in the last 15 years. They are mhomogeneous materials cotnprised of an 

ordered lattice of microscopic particles, mclusions, or columns embedded in an optical medium. The 

ordering of the inhomogeneities gives photonic crystals amazing properties such as perfect reflectivity, 

suppression of spontaneous emission, photon localization, and the ability to guide and channel the path of 

light. These properties arise fi-om band gaps which forbid the propagation of light at certain wavelengths. 

These photonic band gaps are analogous to the electronic band gaps in semiconductors and lie in the 

infrared and visible parts of the spectrum. 

The electromagnetic scattering models predicted band gaps for crystalline bcc particle 

configurations. The band gaps were du-ect fiinctions of the crystal's lattice constant, indicating that they 
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arise from the crystalline arrangement of the particles (Figure 5-42). Although the band gap positions 

predicted by the scattering models do not match those found experimentally in colloidal crystals, the 

differences in particle concentration between the simulated and experimental photonic crystals can account 

for this discrepancy. 

The ability of the multipole-based scattering models to predict both conventional wave 

propagation phenomena (focusing, mode conversion, etc.) and exotic wave propagation phenomena 

(localization, photonic band gaps, etc.) is solid evidence that the models are working correctly at a 

qualitative level. The models, however, appear to have deficiencies which prevent them from operating at 

a quantitative level. These deficiencies will now be explored in the following section. 

6.2 Deviations from Real Wave Propagation Behavior 

6.2 (a) Additive Effect of Scattering from Increasing Numbers of Particles 

The VMIST algorithms employ the principle of superposition to derive the total wave field after 

mteracting with the particle dispersion. The incident plane wave and scattered wave fields from all of the 

particles are added linearly to arrive at the final field amplitude. Lmear superposition predicts that both 

constructive and destructive interference would alter the wave fields in a physically realistic manner to 

produce results which would be consistent with natural laws such as conservation of energy. Therefore, the 

incident plane wave was not artificially attenuated m any fashion by the algorithm when it interacted with 

each of the particles, regardless of how far into the dispersion the particle was. Again, the prmciple of 

superposition and the multiple scattering interactions should take care of the amplitudes in a physically 

meaningful manner. 

The results of the scattering simulations demonsfrated that the VMIST models were not working 

in a quantitatively correct manner to enable superposition to function properly. For example. Figure 6-1 

displays the maximum spectral amplitude as a function of particle number for the composite simulations of 

200-^m NaCl particles in a rubber matrix. Since the size of the disk-shaped sample remained constant, the 

particle numbers varied due to changes in the particle volume fraction (10%, 30%, and 50%). Figure 6-1 

clearly shows that the wave field amplitudes increase linearly with particle number. This result is strongly 
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counter-intuitive since back and side scattering from the particles should lead to an overall decrease in field 

amplitude with increasing particle number. 

It is evident from Figure 6-1 that the forward scattering is additive as a function of particle 

number. On introspection this result should be obvious with the use of a single-scatterer approximation. 

Since the incident waves are not attenuated or modified in the simulations (except for phase), all of the 

particles see the same incident wave field where the amplitude is only controlled by the phase of the 

incident wave at flie particle position. For long wavelengths as in the composite simulations, all of the 

particles therefore have approximately the same forward scattering amplitudes. Since these forward 

scattering contributions are added linearly, as flie number of particles increases, so does the amount of 

contribution to the fields from forward scattering in a direct linear fashion. This is why the single-scatterer 

approximation Mis for dispersions with even modest (>15%) particle volume fiactions. ■ 
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Figure 6-1. Maxunum spectral power as a fimction of particle number for composite material simulations. 
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Similar additive effects are seen for the multiple scattering computations (e.g., Figures 5-29 and 5- 

30), indicating that the VMIST algorithm is not calculating a large enough multiple scattering contribution 

to destructively interfere with the incident and singly-scattered waves. Note that an incorrect computation 

of the phase of the multiply-scattered fields would have an equivalent or greater effect as an incorrect 

computation of amplitude. The evidence strongly suggests that the vector multipole based iterative 

scattering method cannot sufficiently simulate multiple scattering in particulate dispersions for reasonable 

computation times (i.e., low n„„ values). The next section provides further evidence for this conclusion 

and an explanation why the VMIST models are not performing at a quantitative level. 

6.2 (b) Similarity between Single and Multiple Scattering Models 

One of the more surprising and perplexing results from the scattering simulations was that there 

was no significant difference between computations employing a single scatterer approximation and full 

multiple scattering. This result held for small (4-particle), large (91-particle), and very large (5,637- 

particle) simulations, and was also mdependent of particle concentration (tested for particle volume 

fractions up to 60%). 

One explanation for these results is that the multiple scattering contributions are naturally much 

smaller than the smgle scattering contributions. This is probably true for dilute packings, but cannot be 

valid for dense packings where wave propagation should assume diffusive characteristics. A more 

probable explanation is that the multiple scattering contributions are very small since the simulations are 

running with insufficient n„ax values for convergence of the addition theorems. This explanation would 

hold even if the translated field amplitudes were of the same order of magnitude as the convergent values 

since the phase of the franslated fields (i.e., direction) is just as mfluential in wave interference and 

superposition effects. 

Interestingly, the similarity between the single and multiple scattering computations may be 

atfributable to the same lack of multiply-scattered waves that causes an unnatural additive effect on the 

scattering (Section 6.2 (a)). Without the destructive interference of multiple scattering, each particle 

experiences the same incident wave (varied only by phase). The strongest fields, aside from the incident 

wave, are therefore the first, singly-scattered waves. Due to the lack of destructive interference by multiple 
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scattering, these fields themselves are not diminished as they propagate through the particle dispersion. 

The secondary multiple scattered waves will always be significantly smaller than the incident and singly- 

scattered waves since the incident and singly-scattered waves are not significantly attenuated by 

interference as they progress through the dispersion. 

As a result of the under-evaluation of the multiple scattering contributions, the particle dispersion 

behaves as a dilute medium in the computations, independent of particle concentration. The original 

incident and singly-scattered waves pass through the dispersion without attenuation. In an actual densely- 

packed particle dispersion, the incident waves are quickly converted to scattered waves in the first few 

particle layers. The only waves reaching the interior particles are those which have been scattered fi-om 

other particles. By the time the waves pass completely through the disperion they have scattered multiple 

times from many particles, and little trace of the original plane wave or singly-scattered wave is present. 

Little research or discussion has been found in the literature that quantitatively evaluates the single 

vs. multiple scattering contibutions in multipole-based multiple scattering computations. It is evident, 

however, that under-evaluation of muhiple scattering leads to nonphysical wave propagation behavior. 

Resolution of this problem is therefore of highest priority in further development of multiple scattering 

models. 

6.3 Computational Inefficiencies 

Computational inefficiencies arise from two sources in the multiple scattermg computations. The 

first is just the laborious calculations requu-ed to compute such functions as spherical Bessel functions, 

spherical harmonics, and Clebsch-Gordan coefficients, and then assembling these basic fiinctions into more 

complex ones such as vector multipole expansions and franslational addition theorem coefficients. Many 

shortcuts have been published for computing these functions faster and more efficiently, mostly with better 

and more refined recursion formulas. A careful investigation and implementation of these methods in the 

VMIST algorithm would be of obvious benefit. 

The second source for the computational inefficiencies reside in the convergence behavior of 

many of VMIST's components and the entire algorithm as a whole. The need for convergence forces us to 
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higher n„ax values, thus increasing the computation time dramatically since the computation time scales as 

«„„ to the 4* power and greater (Table 5-3). Aside from the convergence issues associated with computing 

basic functions from recursion formulas (such as spherical Bessel functions), there are four primary 

convergences that affect the performance of VMIST. These are the following: 

1. Convergence of the translational addition theorems 

2. Convergence of the plane wave expansions 

3. Convergence of the single-sphere scattering solutions 

4. Convergence of the multiple scattering iterations 

Since the convergence of the multiple scattering iterations is the most obvious convergence criteria (since 

lack of convergence here means the lack of a solution), it is discussed fu-st. 

The multiple scattering computations arrive at a solution when the iterations over the scattered 

field amplitudes converge. As the results of Section 5-2 show, for large particles (1 cm) compared with the 

shortest wavelength in the matrix (0.2 cm for shear waves at 1 MHz), the elastic wave computations do not 

converge within certain spectral bands. These bands grow as «„„ increases, then appear to plateau and 

even start decreasing. For frequencies not within these bands, the iterations converge fairly fast (< 30 

iterations for elastic waves; < 10 iterations for electromagnetic waves). 

The origin of the nonconvergence is not known, but one speculation is that the nonconvergent 

frequencies correspond to resonances either associated with the particle sizes or the particle-particle 

separations (since changing both alters the degree of nonconvergence in the spectra). The resonances could 

also arise from mode couplings between the longitudinal and shear modes. As mode conversion at the 

particle's surface converts longitudinal and shear-electric waves back and forth, translation of the shear 

fields convert shear-elecfric and shear-magnetic waves back and forth as well. It is easy to imagine 

resonant instabilities being set up in such a situation. 

(Note that in the electromagnetic models the electric and magnetic fields do not couple by 

scattering, only by translation. There is no longitudinal mode to give rise to mode conversion from 

scattering. Not surprisingly, the elecfromagnetic models do not display iterative nonconvergence except for 

extreme conditions suchas dense particle packings and highly contrasting material properties.) 
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Other possible explanations for the nonconvergences are that the computations are unstable in 

some other fashion, or that the translation coefficients behave anomalously in these frequency regions. 

More testing is required to resolve the source of the nonconvergences. 

The composite material simulations (Section 5-3) did not exhibit nonconvergent behavior, 

possibly due to the small size of the particles (200 |im) compared with the shortest wavelength in the 

matrix (100 |im for shear waves at 2 MHz). The excellent convergence behavior of the computations could 

also be attributable to the large disparity between the longitudinal and shear velocities in the matrix (1450 

m/s vs. 200 m/s). This difference could reduce any resonant couplmg between the shear and longitudinal 

modes and thereby preventing instabilities. 

A remarkable feature of the multiple scattermg computations is the ability of the iterations to 

converge at all. As we have seen in Chapter 4, the translational addition theorems do not converge at the 

n„uvc values we are forced to work with. The plane wave expansions are mostly nonconvergent for these 

n„ax values as well, as are the single sphere scattering solutions (Figures 5-31, 5-32, and 5-39). In spite of 

this, the scattered wavefield coefficients converge readily in the iterative process for the majority of 

frequencies. 

These differences in convergence behaviors between the various parts of the algorithm can be 

misleading. For example, the convergence of the iterative process has been taken by other researchers as 

an indication that the franslational addition theorem coefficients have converged as well. Recently, other 

researchers have looked at the convergence issues separately. However, it is clear that the ability of the 

scattering algorithm to converge although individual components of the algorithm—specifically the 

translation coefficients and plane waves—are not near convergence is a two-edged sword that has lead to a 

significant underestimation of the convergence problem. 

The lack of convergence for the translational addition theorems for modestly high «„„ values 

(-16), and indications that convergence may not even be achievable for exceptionally high n„ax values 

(~80), is of utmost concern for the multiple scattering computations. The accuracy of even modest multiple 

scattering computations is dubious without accurate (i.e., converged) franslation coefficients. Resolving 
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the translational addition theorem convergence problem will be perhaps the most challenging task in 

furthering and improving the VMIST approach. 
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CHAPTER? 

APPLICATIONS 

The applications of wave propagation in particulate media are legion. From the dancing of 

starlight among mterstellar dust grains to the probing of ultrasound in the human body, the mathematical 

description for the interaction of waves with an ensemble of particles is the same. Therefore, computational 

models developed for solvmg the general case of vector wave scattering in a particle-filled medium will 

have a very wide use and appeal. 

Table 7-1 presents examples of particulate systems classified by the state of matter for the matrix 

and particles. These systems embody a variety of interests, including 

scientific (basic understanding of matter, energy, and the universe) 

economic (materials evaluation, geophysical exploration, weather radar) 

defense (ocean acoustics, radar surveillance) 

environmental (remote sensing, atmospheric scattering) 

human health (medical imaging and diagnostics, food quality and safety) 

TABLE 7-1. A sampling of particulate systems that exhibit multiple scattering of elastic or electromagnetic 
waves. 

Matrix 
Particles 

Gas Liquid Solid 

Gas 
Turbulent eddies 

Thermal "bubbles" 
Plasma structures 

Liquid foams 
Bubbly liquids 
Ocean bubbles 

Solid foams 
Photonic crystals 

Porous rocks 

Liquid 
Mists 

Clouds 
Rain 

Emulsions 
Immiscible melts 

Ocean inhomogeneities 

Biological tissue 
Semisolids 

Fluid-bearing rocks 

Solid 
Smoke 
Dusts 

Snow and ice 

Suspensions 
Slurries 

Ocean plankton 

Composites 
Precipitates/inclusions 

Rocks 
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Table 7-2 lists some of the fields of study applicable to the particulate systems listed in Table 7-1 

and categorized by matrix state. These fields encompass a wide breadth of disciplines and interests. 

In its present form VMIST can be applied to many of the physical systems listed in Table 7.1. In 

particular, VMIST is currently structured to model solid particles in a solid matrix for elastic waves, and 

dielectric particles in a dielectric matrix for electromagnetic waves. Although the VMIST algorithm would 

have to be modified for other forms of matter, the changes would not be extensive or difficult. For 

example, the current VMIST simulations encounter problems for elastic waves in fluids (gases and solids) 

since the shear velocity in these materials is zero. This corresponds to an infinite wave vector ks- Although 

this is physically realistic, since it mathematically forces the spherical Bessel and Hankel functions to go to 

zero in the field coefficient solutions, the VMIST code cannot handle an infinite value for fe. Instead, the 

boundary condition solutions in the code must be changed by omitting those terms which contain ks (in fact, 

all computations involving ks must be modified or omitted). Similar modifications would be necessary for 

electromagnetic scattering of conductive or magnetic materials. 

Table 7-3 lists specific applications for particulate scattering models, corresponding experimental 

or measurement methods for the material systems, and references for these applications. The references 

listed are intended only to be representative, not exhaustive, of the extensive knowledge base that exists on 

the applications of electromagnetic and elastic wave scattermg. 

TABLE 7-2. Applicable fields of study. 

Matrix Gas Liquid Solid 

Field of study 

Meteorology 
Climatology 
Planetology 
Astrophysics 

Chemistry 
Chemical processing 

Food science 
Oceanography 

Materials science 
Medicine 

Biophysics 
Geophysics 
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TABLE 7-3. Specific applications of particulate scattering models that could benefit from the 
approach. 

VMIST 

Field Application Measurement Method References 

Nondestructive 
Evaluation 

Particulate composites (particle- 
filled plastics and rubber, concrete, 
ceramics) 

Ultrasound 
Microwaves 
Eddy current methods 

201-206 

Detection and quantification of 
porosity, voids, and inclusions in 
materials 

Ultrasound 
Microwaves 
Eddy current methods 

207-214 

Process control of suspensions 
(paints, precipitates, etc.) 

Ultrasound 
Optical scattering 

215-229 

Materials 
Engineering 
and Design 

Photonic and acoustic band gap 
materials 

Microwaves 
Infrared and visible light 
Ultrasoimd 

69, 199, 
230-245 

Composites, nanocomposites, and 
metal foams 

Ultrasound 
Microwaves 
Diffuse visible and IR scattering 

201-206, 
246-249 

Multiphase suspensions (colloidal 
systems, electrorheological 
materials, liquid crystals, etc.) 

Coupled electromagnetic, 
acoustic, and mechanical fields 

215-229 

Agriculture, 
Forestry, and 
Natural 
Resources 

Milk, oils, processed foods, and 
other suspensions 

Ultrasound 
Optical scattering 

186, 187, 
250,251 

Fruits, vegetables, and meat Ultrasound and acoustics 186,252, 
253 

Soil characterization Acoustics 
Microwaves 

254 

Remote sensing of forest, crop, and 
vegetation health 

Optical scattering 255-260 

Fish schools Sonar 186, 187 

Biophysics and 
Medical Physics 

Cell, tissue, and organ 
characterization 
Blood and contrast agent scattering 

Ulfrasound 
Optical tomography 
Diffuse visible and IR scattering 

261-274 

Geophysics Rocks and geologic formations 
Marine sediments 
Soils 

Seismic and sonar exploration 
Subsurface radar 
EM and resistivity tomography 

142-144, 
275-289 

Oceanography Ocean acoustics 
Plankton research 

Sonar 
Surface optical scattering 

176, 177, 
290-309 

Meteorology Cloud, fog, and precipitation 
scattering 
Dust and aerosol scattering 

Microwave radar 
IR, visible, and UV scattering 

310-316 

Astrophysics Dusty plasmas 
Interstellar dust clouds 
Planetary atmospheres 

Electromagnetic radiation 317-327 



157 

CHAPTER 8 

FUTURE DIRECTIONS 

8.1 Efficiency Improvements 

A major conclusion of this research is that the use of addition theorems for the translation of 

vector spherical wave functions is too inefficient (or inaccurate) for the practical modeling of multiple 

scattering with the use of current desktop computers.  One method for avoidmg the use of addition 

theorems has already been investigated in a preliminary fashion. This is the single scatterer approximation, 

and it appears to be valid for scattering in particle dispersions as long as the material property contrast 

between particle and matrix is not too great, the particle volume fraction is low, or the number of particles 

is small. However, the single scatterer approximation is not a general approach, and cannot be used for 

closely-packed, strongly-scattering particulate media. 

The nearest-neighbor approximation addresses the addition theorem efficiency problem by 

minimizing the computation of translation coefficients. This approximation is not an effective efficiency 

measure, however, for resolution of the slow addition theorem convergence since the computation time 

scales only as the particle number squared (p% but as the fourth (or greater) power of the maximum 

multipole order (Wm^^"). Since the convergence of the addition theorems will, at the least, require «„„, 

values a magnitude larger than currently practical, the computation time will increase by iC-lO^ times. A 

nearest neighbor approxunation will at most provide a 10^ decrease in compution time for a lO' particle 

dispersion (using the 10 nearest neighbors to each particle). For ordered particle arrays, translational 

symmetry can provide another 10-fold decrease in time, but still leaves n„ax the dominant parameter 

controlling the computation speed. 

Other approaches have also been considered for either reducing or completely avoiding the 

addition theorem computations. These include 

• Asymptotic approaches for close particle pau-s 

• Long wavelength approximation 
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• Simplification of addition theorem translations using coordinate rotations 

• Convergence acceleration methods 

• Statistical wave propagation methods 

Asymptotic expressions have been developed for paiticulate mechanics models.^^ They improve 

the efiBciency of the multiple scattering computations by modeling the interactions between closely-spaced 

particle pairs with the use of a parabolic boundary approximation (Figure 8-1). Although this method has 

been successfiilly employed for static elastic fields in particulate media, and could therefore also be used 

for electrostatic and magnetostatic fields, the application of these approximations to dynamic fields (wave 

scattering) is not straightforward. 

FIGURE 8-1. Asymptotic solutions using flat and parabolic surfaces as 0* and l" order approximations to 
spherical interactions. 
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In the long wavelength approximation, both elastic and electromagnetic waves would be treated as 

static fields. As the testing in this research indicates, both the scalar and vector addition theorems are more 

accurate and quickly computed for low frequencies (long wavelengths). At the static limit where the 

frequency drops to zero and the wavelength increases to infinity (i.e., ^->0), the spherical Bessel and 

Neumann fiinctions become simple power-law functions of r:^° 

Jnikr)«-pr^.{h-y (8.1) 
(2« + l)!! 

(kry 
y„(kr)^-(2n + V)l\^—;^ (8.2) 

Eqs. 8.1 and 8.2 fransform the addition theorems from a wave function form containing spherical 

Bessel functions (remember that the spherical Hankel functions are just a combination of j„ (kr) and 

y„ Q^)) to a static field form contaming powers of r. This simplification significantly increases the 

computational speed and accuracy of the boundary condition solutions and addition theorems, as evidenced 

by the use of this method for the modeling of static elastic fields m patrticulate media containing 10''-10' 

particles.^^' The method eliminates the computation of spherical Bessel functions and the inaccuracies of 

using the wave fimction form of the addition theorems. However, we again loose the generality that was 

one of the goals of this research by going to a long-wavelength approximation. 

Finally, it has been shown that the addition theorems can be modestly simplified by restricting the 

franslations to along the z-axis.™ This would moderately improve the computational efficiency, and 

possibly accuracy, of the addition theorems. However, for random particle packings where the majority of 

particles are not ordered along parallel axes, extra calculations would be necessary to rotate the multipole 

fields for each particle pair using Wigner-D functions.'*' It is currently not knovra whether the 

improvement in addition theorem computation would make up for these extra calculations. Mathematical 

methods for accelerating the convergence of the addition theorems, such as fransforming the summations 

mto integrals and solving, may also be a possibility. 

Other methods that are of mterest for future research and that avoid the use of addition theorem 

expansions include path integral and Monte Carlo random walk methods for modeling wave diffiision. In 
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the random walk method, the multipole single scatterer solutions determine the scattering angle and 

amplitude probabilities. They have been successfully employed in light scattering and radiative transfer 

models for clouds"" 

8.2 Fidelity Improvements 

Fidelity improvements would comprise modeling the microstructure of particulate materials more 

realistically. These improvements include more faithful models of random particle arrangements, material 

properties, particle shapes, and particle structure. 

Algorithms and statistical methods for constructing three-dimensional particle packs for close- 

packed particulates with uniform particle sizes have been developed in the ceramics and composites 

communities.^^''"' However, such models are often not applicable to particulates with large particle size 

distributions. Careful design of particle packing models are crucial, however, to avoid introducing 

periodicities or artificial structures not seen in truly random, real-world particulates. Such care is necessary 

for predicting the properties of such materials.^'"' One such particle packing approach builds the particle 

microstructure using a Monte Carlo "particle-droppmg" method.^"' To model particle sizes that may differ 

by up to lOOx, the approach uses a "concentric can" model that builds the microstructure with large 

particles first by filling the large can, and then successively with smaller particles by filling the smaller 

cans. This eliminates the need to model the large number of small particles that fill in the interstices 

between the large particles. 

A different approach to specifying the particle pack microstructure is to reconstruct it from 

observations of real materials.^''^'^'''* Such an approach would provide microstructural models based on 

images acquired from two-dimensional slices of the material of interest, and would also be a good check 

for particle packing programs as described above. Particle packing programs are still necessary, however, 

since the reconstructions are computationally intensive, imperfect, and cannot provide microstructures for a 

wide range of materials without representative samples and testing. 



161 

More accurate and extended models also need to be developed for material properties not 

addressed by the present work. These properties include conductive particles for electromagnetic 

scattering, and viscoelastic properties for elastic wave scattering. Both wovld entail the use of complex 

wave vectors, with a complex permittivity for electromagnetic scattering, and complex Lam6 constants for 

elastic wave scattering. Foreseeing this need, the VMST programs were vraitten to accommodate complex 

variables in the scattering computations. 

To represent true particle shapes we need to model nonspherical particle shapes. The first 

approximation to nonsperical particles is the spheroid (Figure 8-2). A spheroid is capable of modeling both 

highly-elongated, needle-like particles (prolate spheroids) and highly-flattened, pancake-like particles 

(oblate spheroids). This would allow tiie modeling of many particle types such as the long needle-like 

crystals of many minerals or compounds, or the flat flake-like crystals of clays or snowflakes. 

An advantage of using spheroidal particle models is tiiat tiie Helmholtz wave equation is separable 

in spheroidal coordinate systems.^"^"^^ (The Helmholtz equation is also separable in cylindrical and 

ellipsoidal coordinate systems as well.'"^) It is tiierefore possible to constiiict solutions for scattering from 

spheroidal particles. As in tiie spherical particle case, such solutions consist of expansions of spherical 

harmonics (spheroidal angular functions) and spherical Bessel functions (spheroidal radial fimctions). 

Altiiougji more complex, these functions offer complete solutions to tiie scattering problem. 

FIGURE 8-2. Dispersion of I6ng, needle-shaped and flat, plate-shaped spheroidal particles. 
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A sizable number of references have covered electromagnetic scattering from spheroids, with a 

large emphasis on light scattering.""'"* Spheroidal models have been used for various particulate media 

including biological cells, soils, atmospheric dust, clouds, and interstellar grains. Electromagnetic 

scattering from collections of spheroidal particles has also been modeled, necessitating the derivation of 

both translational and rotational addition theorems for spheroidal wave fimctions.^'^"^*^ The scattering of 

elastic waves from spheroids has been researched less, but the literature includes scattering from spheroidal 

cavities and rigid particles.^*'"'^' 

Spheroidal particle and void representations would be very useful for a number of modeling 

applications. For example, the open-cell structure of a metal foam or porous rock, Figure 8-3 (a),could be 

simulated using a network of spheroids, Figure 8-3 (b). Specific rock pore models would include those for 

rocks with flat, layered structure such as shale or slate. Figure 8-4 (a), or for rocks with equiaxial grains 

such as sandstone. Figure 8-4 (b). Spheroids would also be very useful for modeling plant and animal cells 

with either columnar (elongated) or squamous (flattened) shapes. 

(a) (b) 

FIGURE 8-3. Open-cell porous microstructure for rocks and metal foams (a), and scattering model 
representation using spheroids for the pore spaces(b). 
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(a) (b) 

FIGURE 8-4. Porous rock representations using spheroids for the pore spaces, (a) for shales and slates, and 
(b) for sandstones. 

The next level of increasing nonsphericity would be the modeling of ellipsoidal particles with the 

use of ellipsoidal wave functions. Expressing the Helmholtz equation in ellipsoidal coordinates yields the 

ellipsoidal wave equation , also called the Lam6 wave equation. This is the most general equation that can 

be derived from the Helmholtz equation in confocal coordinates and that can be solved by separation of 

variables. The solutions are ellipsoidal (or Lam6) wave functions, and are also referred to as ellipsoidal 

harmonics."^ Although enticing because of their generality, ellipsoidal wave functions are very complex 

and difficult to work with or evaluate analytically. Only a few hardy pioneers have had the fortitude to 

research and apply ellipsoidal wave functions in scattering and electromagnetic problems.^^''"'""' 

The modeling of particles of arbitrary, nonsymmetric shape is particularly challenging, but has 

been achieved with a variety of methods. Perturbation approaches have been developed which treat 

nonsphericity as a perturbation from spherical particles, and scattering solutions have been derived. 

Elliptic cylinders have been used for particle shapes since the Helmholtz equation is also separable m 

elliptic cylindrical coordmates.""* Particle symmetries have also been mvestigated, as well as modeling the 

shape of a particle as a spherical harmonic expansion superimposed on a sphere (for example, a cuboid 

would be comprised of spherical harmonic terms Y^^{6,q)), Ygg(0,(p) and so on).""'"""' Figure 8-5 

shows in two dimensions how such successive multipole terms can be used to construct a cubic particle. 
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Accurate modeling of irregularly-shaped particles is important since it has been shown that light scattering 

from simple shapes (spheres, spheroids, and cylinders) can deviate significantly from that of hexagonal ice 

crystals, particle clusters, and other atmospheric aerosols."" ° 

Since the Helmholtz equation is separable in cylindrical coordinates, multipole methods have been 

employed in the modeling of fiber-remforced composites.""^'^ These methods have only addressed 

miidirectional composites, however, where all of the fibers are parallel. Translation of the fields between 

parallel fibers is relatively straightforward with the use of addition theorems for regular (cylindrical) Bessel 

flmctions.  Additionally, the parallel fiber model reduces to a two-dimensional problem. Most 

manufectuied fiber composites, unfortunately, are not unidirectional but rather have cross-ply and three- 

dimensional weave structures (Figure 8-6). Modeling such microstructures with multipoles would reqmre a 

mathematical method for translating fields between nonparallel fibers (Figure 8-7). Surprisingly, literature 

searches for a translational + rotational addition theorem that would translate fields between skewed 

cylinders have not yielded any results to date. 

0       180 

1 Multipole Term 

240 300 
270 

5 Multipole Terms       20 Multipole Terms 

FIGURE 8-5. Construction of a cubic particle (red line) from a spherical harmonic multipole expansion of 

Ynx4.n.M'P) terms. 
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' (5<5666<^^<^c:^ 

(a) (b) 

FIGURE 8-6. Idealized microstructures for cross-ply (a) and 3-D weave (b) fiber-reinforced composites. 

rotation 7 

FIGURE 8-7. Nonparallel fiber geometry requiring translation and rotation of multipole fields fi-om one 
fiber to another. 

The final level of fidelity that can be addressed by scattering models is the representation of 

particles with an inhomogeneous internal structure. This includes layered and multilayered particles, 

particles with anisotropic or heterogeneous properties, and particles with mtemal inclusions."' "^    Again, 

as with spheroidal scattering, most of the research has been performed for light scattering."""^   One paper, 

however, looks at the scattering of elastic waves fi-om a partially-filled cavity."" Quite recently, 

simulations of light scattering fi-om layered particles has focused on the photonic band gap nature of the 

scattering, 434,435 
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8.3 A Unified Approach to Multipole Fields in Particulate Media 

As mentioned in Section 8.1, in the long wavelength limit (A->0) both the elastic wave and 

electromagnetic scattering models become models for the static properties of the medium. These static 

models are of great interest since the understanding and prediction of electrical and mechanical properties 

in particulate materials has dkect application to material strength, durability, performance, service life, and 

failure. Also, in concert with the wave scattering models, they would provide a more complete and unified 

description of particulate material properties and behavior. 

Models for electrical conduction in collections of spheres have a venerable history, starting with 

Maxwell and Rayleigh in the 19* century, and developed forther by McPhedran and McKenzie and others 

in the later half of the 20* century."'""^ The principal method employed for solvmg the electrical 

conduction problem involves multipole expansions of the potential in a lattice of particles. The periodicity 

of the lattice allows solution of the problem analytically. 

The same multipole expansions of the potentials can also be used to model the electrostatic fields 

in particulate media.""''""* For random media, Davis rederived the translational addition theorem for static 

scalar fields using an integral method, and employed an iterative solution for the electrostatic field that was 

used as the blueprmt for the scattering models in this work.""' With extension to static vector fields, the 

multipole method has also been applied to elastostatic fields.'^*''^'-""'' The use of elastostatic models for 

composites and other particulate materials are of keen interest to engineers who want ot predict the 

mechanical properties of these materials as a fimction of microstructure. 

Models for thermal properties and heat conduction in particulate media have also been developed 

using multipole approaches.""'-""' Again, these approaches start fi-om the lattice approximation, but could 

also be generalized to random dispersions of particles. 

Although it has been show that the translational addition theorems converge too slowly and are too 

computationally inefficient for current wave scattering models, addition theorems for static models do not 

share this fate since the spherical Bessel functions in the wave models are replaced with power-law and 

inverse-power-law functions of r. These functions do not have the convergence problems that the spherical 

Bessel functions do, and convergence of the addition theorems are both quicker and more computationally 
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efficient.^^' Extending the VMIST wave scattering models to static fields would therefore be a 

straightforward exercise, and may allow the computation of both low-frequency waves and static fields in a 

unified approach. 

Additionally, the ability to model material properties on a continuum from static behavior to 

dynamic behavior would have substantial technical benefit. Often, the wave propagation properties of a 

material differ from its static properties, which is a problem for nondestructive characterization methods 

which seek to determine a material's physical state and properties from the wave properties. A continuum 

model, however, would allow such a determiniation by providing the "missing link" between static material 

properties (e.g., mechanical) with dynamic material properties (e.g., ulfrasonic). 

Finally, the VMIST approach could be expanded to encompass tensor as well as vector and scalar 

fields. One application of tensor fields has aheady been mentioned in Section 3.3 with regards to sfress and 

strain fields. Tensor fields might be more appropriate descriptions for stress and strain in anisofropic 

materials, and expansions of tensor spherical harmonics have aheady been used to describe crystal 

orientation effects in seismic wave propagation through rocks."'" The other physical application of tensor 

fields is gravitational radiation. Again, tensor spherical harmonics have been formulated for gravity 

waves."^'"'' Although one is hard put to imagine a multiple scattering scenario for gravity waves, one 

possible application of a gravity wave scattering or interaction model is in the design of novel gravitational 

radiation detectors that convert gravity waves to acoustic vibrations in solid materials.' . 452 
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CHAPTER 9 

CONCLUSIONS 

The goal of this dissertation was to develop and test ab initio computational models for the 

multiple scattering of elastic and electromagnetic waves in particulate media. The purposes for such 

models would be to (1) determine how the structure of a particle-filled medium mfluences the propagation 

and scattering of elastic and electromagnetic waves; (2) predict the structure and properties of a particle- 

filled medium from the measured wave properties; and (3) design particle-filled materials with new or 

enhanced properties for technological applications. This work was limited to the development of forward 

models—models that describe the interaction of waves in a given particle-filled microstructure. However, 

having the capability to predict how waves interact in a particle-filled medium (the forward model) is the 

first step in developing models that can predict the properties and structure of a medium from the measured 

wave properties (the mverse model). 

The approach for developing the computational models was comprised of the following steps: 

1. Recast the fiindamental Maxwell and Navier equations as vector Helmholtz equations and define 

vector multipole fimctions appropriate for solution of both equations in a spherical coordinate 

system. 

2. Solve the equations for single particle scattering using boundary conditions and orthogonality of 

the vector multipoles. 

3. Derive translational addition theorems that allow the scattered wave fields from one particle to be 

recast in the coordinate system of a second particle. This allows the waves to be translated from 

one particle to another, which is necessary for a first-principles computation of multiple scattering. 

4. Design an algorithm to account for all particle-particle interactions in the computations by 

iterating through the particle configuration. 

5. Test the derived translational addition theorems for computational efficiency, accuracy, and 

convergence, and compare to previously pubHshed theorems m the literature. 

6. Test the multiple scattering simulations with a variety of particle numbers and configurations, and 

identify areas for improvement in the models. 
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7.    Compare multiple scattering simulation results with those using single scatterer aiid nearest 

neighbor approximations. 

The original and significant contributions of the presented work consist of (1) review and 

reformulation of current theory to achieve greater consistency, elegance, and accuracy; (2) extension of 

current capabilities to create scattering models with increased generality and greater utility; and (3) 

quantitative testing of the multiple scattering theory and identification of deficiencies. 

The mathematical foundations and theory for the iterative solution of multiple scattering in a 

particle-filled medium were investigated, and many areas for improvement were discovered. First, several 

different forms of vector spherical wave fiinctions have been employed in the past to solve spherically- 

symmetric scattering problems. This work has shown that the choice of vector spherical wave functions is 

important in simplifying the problem and in deriving the correct form of the translational addition 

theorems. To address this issue, modified vector wave functions were presented, compared to those 

previously used, and implemented in this work. 

Second, the solution of the boundary conditions for the scattering from a single sphere has often 

been given cursory treatment in the literature, and yet contains pitfalls and apparent inconsistencies if not 

properly addressed, specifically in the application of orthogonality to simplify the equations. This issue 

was resolved by showing how the boundary condition solutions can be elegantly solved in vector form with 

the use of the orthogonality of the pure-orbital vector spherical harmonics. 

Recasting the equations with spherical wave functions built from pure-orbital vector spherical 

harmonics provided several advantages, both in the solution of the boundary condition equations and in the 

derivation of the translational addition theorems. The pure-orbitial vector spherical harmonics provide a set 

of vector spherical wave functions that simplify both single sphere scattering and multiple scattering with 

addition theorems. It was shown that the boundary conditions for electromagnetic scattering can be readily 

solved by retaining the vector form of the equations, and by applying orthogonality of the vector spherical 

harmonics. This same method also works for the displacement boundary conditions for acoustic scattering, 
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but cannot resolve the stress boundary conditions which are tensor equations of second and fourth-rank 

tensors. 

Third, various forms of translational addition theorems have been published with differing 

computational results. Some of these theorems produce poor results and their correctness is suspect. Such 

results can introduce significant error into multiple scattering solutions. To resolve this issue, the addition 

theorems were rederived in pure-orbital vector spherical harmonic form with an integral approach. A test 

procedure was also devised to assess the accuracy and convergence of the translation coefficients 

mdependent of either single or multiple scattering convergence. 

The results confirmed that the pure-orbital addition theorems were numerically equivalent to the 

most well-known theorems in the literature. The results also showed, however, that some published 

theorems are incorrect and do not converge. The convergence of the translation coefficients was shown to 

behave similarly to that of the plane wave expansions, and has therefore been severely underestimated in 

previous articles. The convergence of the theorems for some geometries was also shown to exhibit 

extensive flat or plateau-like regions across wide n„ax values. These plateau regions can give false 

impressions of convergence when encountered in multiple scattering computations, and may contribute to 

inaccuracies in the model results. 

Using the above mathematical tools, elastic and electromagnetic wave scattering models were 

constructed to simulate the scattered wavefields as a function of both fi-equency and spatial distribution 

fi-om an ensemble of particles. Numerous simulations were generated for particle configurations ranging 

from 4 to 5,000 particles, and with both ordered and disordered arrangements. The results correctly 

predicted many physical phenomena including focusing effects, shear wave scattering behavior, 

wavelength changes in various materials, and the formation of photonic band gaps. The models can 

therefore be considered valid at a quantitative level 

The computations performed in this work were not quantitatively accurate, however. The lack of 

addition theorem convergence was shown to produce physically unrealistic results. Specifically, the 

multiple scattering contributions were much smaller than the single scattering contributions, even for dense 

dispersions of up to 60% particle volume. The inability to accurately calculate the multiple scattering 
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contribution also resulted in an unrealistic increase in forward scattering with particle number. Without 

sufficient multiple scattering to destructively interfere with the incident and smgly scattered waves, the 

amplitudes of the transmitted waves increased linearly with particle number and therefore violated 

conservation of energy. 

The testing performed with both the translational addition theorems and scattering models have 

revealed that nonconvergence of the addition theorems is the most critical problem for the multiple 

scattering simulations. This problem has not been identified or addressed m the published literature due to 

the lack of real testing for the translational addition theorems mdependent of scattering, and due to their 

plateau-like convergence behavior for wide «„„ ranges and various geometries. 

In addition to the lack of convergence for the translational addition theorems at computationally 

practical values for n„«, the primary computational problems encountered in the development and testing 

of the particulate media scattermg models were the overall slowness and inefficiency of the computations, 

and the rapid scaling of computation time with particle number and «„„• These problems remain 

unresolved, and yet their solutions are critical for the successful development of multipole-based multiple 

scattering models. 
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